
Mike McQuaid
Foreword by Scott Chacon

M A N N I N G

INCLUDES 66 TECHNIQUES

www.it-ebooks.info

http://www.it-ebooks.info/

Git in Practice
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Git in Practice
MIKE MCQUAID

M A N N I N G
SHELTER ISLAND
www.it-ebooks.info

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Dan Maharry
20 Baldwin Road Technical development editor: Glenn Burnside
PO Box 761 Copyeditor: Benjamin Berg
Shelter Island, NY 11964 Proofreader: Tiffany Taylor
 Typesetter: Dottie Marsico
 Cover designer: Marija Tudor

ISBN 9781617291975
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 19 18 17 16 15 14
www.it-ebooks.info

www.manning.com
http://www.it-ebooks.info/

brief contents

PART 1 INTRODUCTION TO GIT...1

1 ■ Local Git 3

2 ■ Remote Git 24

PART 2 GIT ESSENTIALS..51

3 ■ Filesystem interactions 53

4 ■ History visualization 68

5 ■ Advanced branching 84

6 ■ Rewriting history and disaster recovery 104

PART 3 ADVANCED GIT ..127

7 ■ Personalizing Git 129

8 ■ Vendoring dependencies as submodules 141

9 ■ Working with Subversion 151

10 ■ GitHub pull requests 163

11 ■ Hosting a repository 174
v

www.it-ebooks.info

http://www.it-ebooks.info/

BRIEF CONTENTSvi
PART 4 GIT BEST PRACTICES..185

12 ■ Creating a clean history 187

13 ■ Merging vs. rebasing 196

14 ■ Recommended team workflows 206
www.it-ebooks.info

http://www.it-ebooks.info/

contents
foreword xiii
preface xv
acknowledgments xvii
about this book xviii
about the cover illustartion xxii

PART 1 INTRODUCTION TO GIT ..1

1 Local Git 3
1.1 Why do programmers use Git? 3
1.2 Initial setup 4

TECHNIQUE 1 Creating a repository: git init 5
1.3 .git subdirectory 6
1.4 Creating a new commit: git add, git commit 7

TECHNIQUE 2 Building a new commit in the index staging
area: git add 8

TECHNIQUE 3 Committing changes to files: git commit 10

TECHNIQUE 4 Viewing history: git log, gitk, gitx 13
1.5 Rewriting history 18

TECHNIQUE 5 Viewing the differences between
commits: git diff 18

1.6 Diff formats 21
vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSviii
1.7 Refs 22
1.8 Summary 23

2 Remote Git 24
TECHNIQUE 6 Adding a remote repository: git remote add 24

2.1 Authoritative version storage 27
TECHNIQUE 7 Pushing changes to a remote repository: git

push 28
TECHNIQUE 8 Cloning a remote/GitHub repository onto

your local machine: git clone 30
TECHNIQUE 9 Pulling changes from another

repository: git pull 32
TECHNIQUE 10 Fetching changes from a remote without

modifying local branches: git fetch 35
TECHNIQUE 11 Creating a new local branch from the

current branch: git branch 37
TECHNIQUE 12 Checking out a local branch: git checkout 40
TECHNIQUE 13 Pushing a local branch remotely 42
TECHNIQUE 14 Merging an existing branch into the

current branch: git merge 44

2.2 Merge conflicts 46
2.3 Rebasing 47

TECHNIQUE 15 Deleting a remote branch 47
TECHNIQUE 16 Deleting the current local branch after merging 49

2.4 Summary 50

PART 2 GIT ESSENTIALS ...51

3 Filesystem interactions 53
TECHNIQUE 17 Renaming or moving a file: git mv 54
TECHNIQUE 18 Removing a file: git rm 55
TECHNIQUE 19 Resetting files to the last commit: git reset 56
TECHNIQUE 20 Deleting untracked files: git clean 57
TECHNIQUE 21 Ignoring files: .gitignore 59
TECHNIQUE 22 Deleting ignored files 60
TECHNIQUE 23 Temporarily stashing some changes: git stash 61
TECHNIQUE 24 Reapplying stashed changes: git stash pop 63
TECHNIQUE 25 Clearing stashed changes: git stash clear 64
TECHNIQUE 26 Assuming files are unchanged 64
TECHNIQUE 27 Listing assumed-unchanged files 65
TECHNIQUE 28 Stopping assuming files are unchanged 66

3.1 Summary 67
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS ix
4 History visualization 68
TECHNIQUE 29 Listing only certain commits 69

4.1 git show 70
TECHNIQUE 30 Listing commits with different formatting 71

4.2 Custom output format 74
4.3 Releasing logs: git shortlog 75
4.4 The ultimate log output 75

TECHNIQUE 31 Showing who last changed each line of a
file: git blame 76

TECHNIQUE 32 Finding which commit caused a particular
bug: git bisect 78

4.5 Automating git bisect 82
4.6 Summary 83

5 Advanced branching 84
TECHNIQUE 33 Merging branches and always creating

a merge commit 85

5.1 Merge strategies 87
TECHNIQUE 34 Resolving a merge conflict 88

5.2 Using a graphical merge tool 93
TECHNIQUE 35 Resolving each merge conflict only

once: git rerere 94
TECHNIQUE 36 Creating a tag: git tag 95
TECHNIQUE 37 Generating a version number based on

previous tags: git describe 97
TECHNIQUE 38 Adding a single commit to the current

branch: git cherry-pick 98
TECHNIQUE 39 Reverting a previous commit: git revert 101
TECHNIQUE 40 Listing what branches contain a commit:

git cherry 102

5.3 Summary 103

6 Rewriting history and disaster recovery 104
TECHNIQUE 41 Listing all changes including history

rewrites: git reflog 105

6.1 Avoiding and recovering from disasters 106
TECHNIQUE 42 Resetting a branch to a previous

commit: git reset 107
TECHNIQUE 43 Rebasing commits on top of another

branch: git rebase 110
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSx
TECHNIQUE 44 Rebasing commits interactively:
git rebase - -interactive 114

TECHNIQUE 45 Pulling a branch and rebasing commits:
git pull - -rebase 117

TECHNIQUE 46 Rewriting history on a remote branch:
git push - -force 119

TECHNIQUE 47 Rewriting the entire history of a branch:
git filter-branch 121

6.2 Summary 125

PART 3 ADVANCED GIT..127

7 Personalizing Git 129
TECHNIQUE 48 Setting the configuration for all

repositories 130
TECHNIQUE 49 Setting the configuration for a single

repository 131

7.1 Useful configuration settings 133
Colored output in Git 133 ■ Git 2.0’s push defaults 133
Pruning branches automatically 134 ■ Ignoring files across all
repositories: global ignore file 134 ■ Displaying help output in
your web browser 135 ■ Storing passwords in the OS X
keychain 135 ■ Storing arbitrary text in Git configuration 136
Autocorrecting misspelled commands 136

TECHNIQUE 50 Aliasing commands 137

7.2 Sharing your Git (or other) configuration between
machines 138
TECHNIQUE 51 Showing the current branch in your

terminal prompt 139

7.3 Summary 140

8 Vendoring dependencies as submodules 141
8.1 When are submodules useful? 141

TECHNIQUE 52 Adding a git submodule: git submodule
add 143

TECHNIQUE 53 Showing the status of submodules:
git submodule status 146

TECHNIQUE 54 Updating and initializing all submodules:
git submodule update - -init 147

TECHNIQUE 55 Running a command in every submodule:
git submodule foreach 149

8.2 Summary 150
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xi
9 Working with Subversion 151
TECHNIQUE 56 Importing an SVN repository into a Git

repository 151

9.1 Subversion branches and tags 154
9.2 Subversion ignore rules 155
9.3 Updating a Subversion repository 156
9.4 Subversion authors and committers 158
9.5 Viewing a Subversion repository in GitX 158
9.6 Migrating a Subversion repository to Git 158

TECHNIQUE 57 Committing and pushing to an SVN
repository from a Git repository 159

9.7 Local branching and tagging 160
TECHNIQUE 58 Accessing a GitHub repository with

Subversion 161

9.8 Summary 162

10 GitHub pull requests 163
10.1 What are pull requests and forks? 163
10.2 Interacting with GitHub from the command-line: gh 165

TECHNIQUE 59 Making a pull request in the same repository:
gh pull-request 165

TECHNIQUE 60 Making a pull request from a forked repository:
gh fork 168

TECHNIQUE 61 Merging a pull request from the same
repository 169

TECHNIQUE 62 Merging a pull request from a forked
repository: gh merge 172

10.3 Summary 173

11 Hosting a repository 174
TECHNIQUE 63 Initializing a local repository in a server

hosting format: git init - -bare 175
TECHNIQUE 64 Mirroring a repository: git clone - -mirror 176
TECHNIQUE 65 Sharing a repository with other users on

the same network: git daemon 178
TECHNIQUE 66 Displaying a repository in a browser:

git instaweb 180

11.1 Advanced Git hosting 182
11.2 Summary 183
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxii
PART 4 GIT BEST PRACTICES ...185

12 Creating a clean history 187
12.1 Writing a good commit message 187
12.2 Building a commit from parts of files: git add - -patch 188
12.3 Graphically building a commit from parts of files 191

Graphically building a commit in GitX 191 ■ Graphically
building a commit in Git Gui 193

12.4 Avoiding whitespace issues: git diff - -check 194
12.5 Summary 195

13 Merging vs. rebasing 196
13.1 CMake’s workflow 196

Workflow commands 198

13.2 Homebrew’s workflow 200
Workflow commands 201

13.3 CMake workflow pros and cons 202
13.4 Homebrew workflow pros and cons 203
13.5 Picking your strategy 204
13.6 Summary 205

14 Recommended team workflows 206
14.1 GitHub Flow 207

Pros and cons 209

14.2 Git Flow 209
Pros and cons 212

14.3 Mike Flow 213
Mike Flow Single 213 ■ Mike Flow Multiple 215 ■ Pros and
cons 217

14.4 Which workflow is for you? 218
14.5 Summary 219

appendix A Git installation 221
appendix B Creating a GitHub account and repository 224
appendix C Commented Git configuration 229
appendix D Why use version control? 234

index of Git methods 239
index 241
www.it-ebooks.info

http://www.it-ebooks.info/

foreword
I first heard of Git probably nine years ago, around the end of 2005, right around
when v1.0 was being tagged. Reading through my friend Mike’s book, it amazes me
just how much has changed in what I’m only now realizing has been nearly a decade
of history.

 At the time I was introduced to Git, it was still very much more of a collection of
tools for content management and less a version control system. It was installed as
hundreds of commands such as git-update-index instead of the single git com-
mand we now call. In fact, in my first exposure to it, I used it at work as a transport
mechanism for media content, instead using Perforce to version-control the code we
wrote around Git.

 It fascinated me how clean and simple the data model was and how easy it was to
manipulate to do anything you wanted, not simply what was prescribed and intended.
Equally fascinating was how difficult it was to learn. It took my friend weeks to drill
into me how this thing worked, but after that I was totally hooked and have spent most
of the decade since helping people use it and understand it.

 If you’re still struggling with Git, this book does a great job of leading you through
the basics in a straightforward manner. If you’re already comfortable with those, parts
3 and 4 will help you see other ways you could be using Git to make your team’s work-
flows simpler or more effective. Although I’ve spent a lot of time learning and explain-
ing to others the elegant simplicity of the data model, I’ve never helped run a huge
open source effort such as Homebrew as Mike has, and that experience is invaluable
in explaining more advanced and complex workflows as Mike describes here.
xiii

www.it-ebooks.info

http://www.it-ebooks.info/

FOREWORDxiv
 I hope you enjoy this book, and I hope you use it to understand and enjoy the
amazing benefits that a tool like Git can bring to your daily development life. I’m
proud of Mike for taking on this challenge and for producing a great book on a tool
that has made the transition over the past decade from being an interesting hobbyist’s
script to an essential part of millions of software developers’ daily lives.

SCOTT CHACON

AUTHOR OF PRO GIT
www.it-ebooks.info

http://www.it-ebooks.info/

preface
As all good software engineers will agree: version control is important. I was first intro-
duced to version control while studying computer science at university and dabbling
with open source in my free time. CVS and Subversion started being used for manag-
ing our small pieces of coursework, group projects, and larger open source projects
we interacted with. Initially it all felt a bit like overkill: why do I need this when I’m
working by myself? It only took a few personal screw-ups for me to understand why ver-
sion control is so important.

 I was introduced to Git in 2006 while working on audio drivers for the Linux ker-
nel at a summer internship. It was a fairly terrifying beast in those days: incredibly fast
compared to its competitors, impressive in how it managed almost everything offline,
but with an arcane user interface that was full of jargon. The jargon has decreased,
but everything else remains fairly similar: Git is fast, impressive, and confusing.

 My first few jobs after graduating found most companies still using Subversion. Git
was one of those things used by kernel hackers and the particularly hardcore open
source crowd, and it wasn’t ready for mainstream use yet. I liked the glimpse I’d had
of it, so I continued using it stealthily with git svn, a bridge that allows you to access
Subversion repositories using Git. Eventually GitHub came along and convinced peo-
ple that Git could be easy to use, and I was able to use Git more regularly. I became a
maintainer of the Homebrew Mac OS X package manager, and more employers and
clients began to use GitHub.

 I think because I was a relatively early adopter of Git and the type of person who
needs to know how things work, I ended up helping others with Git: first at my
own workplace and then through training courses, talks, and helping others in the
xv

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACExvi
open-source community. Eventually I was contacted by another publisher about writ-
ing a Git book, and I contacted Manning to ask if I could write with them. The result is
Git in Practice: a book that takes you from intermediate- to advanced-level Git tools and
workflows that I’ve found useful while working as a software engineer.
www.it-ebooks.info

http://www.it-ebooks.info/

acknowledgments
There are many people without whom this book wouldn’t be a reality. First, I’d like to
thank Dan Maharry, my development editor at Manning, who kept me motivated and
provided excellent feedback that has resulted in a far better book than I could have
created on my own. Additionally, many others who work at and with Manning
have helped me along the way, particularly Jay Bryant, Michael Stephens, Bert Bates,
Benjamin Berg, Glenn Burnside, Tiffany Taylor, and Ozren Harlovic.

 Thanks to Scott Chacon for his great book Pro Git, which helped me while I was
learning Git, and for agreeing to write the foreword.

 Thanks to Karsten Strøbæk for his technical proofread of the manuscript shortly
before it went into production, to Gerd Koenig for his help, and to the following
reviewers who provided invaluable feedback: Alan Lenton, Art Bergquist, Chris Cou-
choud, Clare Macrae, Corey Gallon, Gregor Zurowski, Jean-Pol Landrain, John Guth-
rie, Ken Fricklas, Nathan Davies, Patrick Toohey, Rick Umali, Tarin Gamberini, and
Zarko Jovicic.

 Thanks to Linus Torvalds, without whom this wonderful version control system
would not exist, and to Tom Preston-Werner, Chris Wanstrath, and PJ Hyett for start-
ing GitHub, without which Git wouldn’t have nearly the widespread usage it does
today. Also thanks to them for hiring me!

 Finally, I’d like to thank my wife Lindsay for putting up with my occasional whining
about writing this book and for her understanding about how much time I had to
spend on it.
xvii

www.it-ebooks.info

http://www.it-ebooks.info/

about this book
Git in Practice is not a comprehensive guide of every single command and feature avail-
able with Git. A book that covered this would be considerably longer than the one you
find before you, and you’d learn a lot of unnecessary information. Instead, this book
provides a detailed understanding of all the features of Git that are useful when you’re
using Git to manage source code for software projects. I decided on the contents by
looking at my Terminal shell history and prioritizing commands based on how much I
use them. I also discuss workflows and best practices used in the real world to organize
software projects when using Git.

 This book isn’t written for every software developer but, as an In Practice book, aims
at the intermediate to advanced level. To get the most out of this book, you should be
able to relate to or exceed the knowledge of one of these target readers:

■ Software developer who uses Git and knows enough to interact with a Git repos-
itory but lacks understanding of any features beyond those provided by other
version control systems

■ Software developer with advanced Subversion knowledge (able to branch,
merge, and set/get Subversion metadata variables) who wishes to learn how to
use Git

■ Software developer who wishes to learn Git best practices to contribute to open
source projects on GitHub

■ Trainer with Git experience who wants to learn about more conceptual topics,
commands they may have missed, and workflows, and who wants a resource to
help coach others about using Git
xviii

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK xix
■ System administrator who has a good understanding of version control but
wants to create Git repositories for scripts and/or host repositories for teams

If you don’t know this much yet, don’t worry. You can either try to work through this
book and reread parts you struggle with or pick up a beginner’s guide to Git through
Manning, another publisher, or online and come back to Git in Practice afterward.

 This book also has some recommended prerequisite knowledge and tools:

■ Command line—I assume you’re familiar with the command line, because Git is
only used as a command-line tool in this book. For example, you need to be
able to create, edit, and remove directories and files from the command line.
This includes Windows users, who will need to install MSYSGit (which provides
Git in a Unix shell on Windows).

■ Software development—This book assumes a basic understanding of (and desire
to learn more about) how version control is used by a team of software develop-
ers to build software projects.

■ Git or version control—You should understand versions, branching, and merging
in Git (such as git commit) or another version control system (such as Subver-
sion commit, log, copy, switch, and merge).

■ GitHub—You should be able to access a free GitHub account.
■ Programming languages—You don’t need to know any particular programming

language.

Again, if you don’t know any of this, don’t worry. The book may be trickier for you,
but it shouldn’t be impossible to work through, and there’s nothing that another
beginner title or a search online won’t be able to help you with.

 Many of the chapters are organized into numbered Techniques, and these in turn
consist of a Problem, Solution, and Discussion section for each Technique.

Roadmap
Part 1 (chapters 1 and 2) flies through the basics of using Git while teaching you the
underlying concepts that are often misunderstood or omitted in beginners’ guides.
You may know how to use Git already, but I encourage you to persevere through this
part anyway; it sets a good foundation that the rest of the book builds on:

■ Chapter 1 covers why Git was created and how to create and interact with a local
Git repository by committing files, viewing history, examining changes between
commits, and using graphical tools.

■ Chapter 2 discusses connecting your local Git repository to other repositories
over the internet, allowing you to send and receive changes.

Part 2 (chapters 3–6) covers the most essential commands to learn when using Git
either alone or with a team. This is where you’ll start to see some of the more powerful
differences between Git and other version control systems, with advanced branching
capabilities and history rewriting:
www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOKxx
■ Chapter 3 discusses using interacting with files and directories in a Git repository,
ignoring files or changes, deleting files based on their status in the repository,
resetting files to a previous state, and temporarily storing changes to files to be
reapplied later.

■ Chapter 4 covers using Git’s history-querying capabilities and configuring his-
tory to display the most useful information for any particular task.

■ Chapter 5 examines using branches effectively with merges, dealing with con-
flicts, tagging, and reverting commits.

■ Chapter 6 covers changing previous commits in a Git repository (known as
rewriting history) and avoiding losing your work when doing so or through data
corruption.

Part 3 (chapters 7–11) provides some bonus Git skills that will help you be more effi-
cient. These chapters introduce a collection of techniques that won’t be used with
every Git project but may be important for new ones:

■ Chapter 7 covers personalizing Git’s configuration so you can work most effec-
tively and efficiently given the current project, computer, or version of Git
you’re working on.

■ Chapter 8 discusses using Git’s submodules to reference other Git repositories
from inside a Git repository. This is particularly useful when you’re dealing with
software dependencies.

■ Chapter 9 covers interacting with Subversion repositories using Git either as a
day-to-day workflow or as a one-time import and migration of a Subversion
repository to Git.

■ Chapter 10 examines using GitHub’s pull request and forks features to work
effectively in teams and contribute to open source software.

■ Chapter 11 covers how Git repositories are hosted and migrated.

Part 4 (chapters 12–14) discusses different workflows and best practices for using Git
as part of a team of software developers. You will be able to compare and contrast dif-
fering approaches and decide which is best for your team:

■ Chapter 12 covers how to ensure that your commit history is clean, readable,
and useful by using small, meaningful commits.

■ Chapter 13 discusses the CMake and Homebrew open source projects’ different
workflows and compares them to examine the differences between rebase-
heavy and merge-heavy workflows.

■ Chapter 14 examines the most widely used workflows and my recommended
workflows for working with Git as part of a software team, and how to manage
branching, merging, rebasing, and releasing new versions of software.

The book also has four appendixes:

■ Appendix A explains how to install Git on Windows, Mac, Linux, and Unix.
www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK xxi
■ Appendix B covers creating a GitHub account and repository for use through-
out this book.

■ Appendix C examines my Git configuration file: what I’ve customized, how, and
why.

■ Appendix D discusses why you should use version control and how to convince
others that doing so is a good idea.

About the code
This book works through creating the Git repository for a silly example book called
Git in Practice: Redux. This is available to download on GitHub at https://github.com/
GitInPractice/GitInPracticeRedux. Note that the current state of this repository is the
state after following all the examples in the book, so you should browse to the begin-
ning of the history if you wish to follow along with the book’s listings.

 I also used a Git repository when writing this book in AsciiDoc files. If you wish to
access this for an online copy of the book, to submit changes, or to see how it changed
over time, please email me your GitHub username at mike+gitinpractice@mikemcquaid
.com and I will grant you access to the repository.

 My commented Git configuration is available in my dotfiles repository on GitHub
at https://github.com/mikemcquaid/dotfiles and in appendix C.

 The code is also available for download from the publisher’s website at www
.manning.com/GitinPractice.

Author Online
Purchase of Git in Practice includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the author and from other users. To access the forum and sub-
scribe to it, point your web browser to www.manning.com/GitinPractice.

 This page provides information on how to get on the forum once you’re regis-
tered, what kind of help is available, and the rules of conduct on the forum. Man-
ning’s commitment to our readers is to provide a venue where a meaningful dialog
between individual readers and between readers and the author can take place. It’s
not a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the author
Mike McQuaid works as a software engineer at GitHub, speaks at conferences, and
trains people in using Git. He has contributed widely to Git-based open source soft-
ware, including Qt and the Linux kernel, and is a maintainer of the Git-based Home-
brew project, a popular OS X package manager.
www.it-ebooks.info

https://github.com/GitInPractice/GitInPracticeRedux
https://github.com/GitInPractice/GitInPracticeRedux
https://github.com/mikemcquaid/dotfiles
www.manning.com/GitinPractice
http://www.manning.com/GitinPractice
http://www.manning.com/GitinPractice
http://www.it-ebooks.info/

about the cover illustration
The figure on the cover of Git in Practice is captioned “A Kamtchatdale in her full dress
in 1768.” The Kamtchatka Peninsula is the eastern-most part of Russia, lying between
the Pacific Ocean to the east and the Sea of Okhotsk to the west. The illustration is
taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and
Modern, London, published between 1757 and 1772. The title page states that these
are hand-colored copperplate engravings, heightened with gum arabic. Thomas Jef-
ferys (1719–1771) was called “Geographer to King George III.” He was an English car-
tographer who was the leading map supplier of his day. He engraved and printed
maps for government and other official bodies and produced a wide range of com-
mercial maps and atlases, especially of North America. His work as a map maker
sparked an interest in local dress customs of the lands he surveyed and mapped; they
are brilliantly displayed in this four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the eighteenth century and collections such as this one were popular, introduc-
ing both the tourist as well as the armchair traveler to the inhabitants of other
countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the
uniqueness and individuality of the world’s nations centuries ago. Dress codes have
changed, and the diversity by region and country, so rich at one time, has faded away.
It is now often hard to tell the inhabitant of one continent from another. Perhaps, try-
ing to view it optimistically, we have traded a cultural and visual diversity for a more
varied personal life—or a more varied and interesting intellectual and technical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of national costumes three centuries ago, brought back to
life by Jefferys’ pictures.
xxii

www.it-ebooks.info

http://www.it-ebooks.info/

Part 1

Introduction to Git

Part 1 (chapters 1–2) will fly through the basics of using Git while teaching
you the underlying concepts that are often misunderstood or omitted in begin-
ners’ guides. You may know how to use Git already, but I encourage you to perse-
vere through this part of the book; it’s a good foundation that the rest of the
book will build on.

 This part covers the following topics:

 Why Git was created
 How to create and commit files in a new local Git repository
 How to view the history of a Git repository at the command line or using

graphical tools
 How to download changes from and upload changes to a remote Git

repository
 How to create and merge branches
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Local Git
In this chapter, you’ll learn how and why to use Git as a local version control system.
Let’s start by learning why Git is so widely used by programmers.

1.1 Why do programmers use Git?
Git was created by a programmer to be used by programmers. Linus Torvalds, the
creator of the Linux kernel, started writing Git in 2005 with the goal of having a dis-
tributed, open-source, high-performance, and hard-to-corrupt version control sys-
tem for the Linux kernel project to use. Within a week, Git’s source code was
hosted inside the Git version control system; and within two and a half months, ver-
sion 2.6.12 of the Linux kernel was released using Git.

This chapter covers
 Why Git was created

 Creating a new local Git repository

 Committing files into a Git repository

 Viewing the history of a Git repository

 Using gitk/GitX to visualize the history of a Git
repository

 Viewing the differences between Git commits
3

www.it-ebooks.info

http://www.it-ebooks.info/

4 CHAPTER 1 Local Git
 Since its initial creation for the Linux kernel, Git has come to be used by many
other open source projects, all sizes of companies, and large “social coding” Git host-
ing sites such as GitHub.

 Git is my preferred method of software source code control. I also use it for ver-
sioning plain text files such as the manuscript for this book. Git has many strengths
over other methods of source control. It stores all the history, branches, and commits
locally. This means adding new versions or querying history doesn’t require a network
connection. Git’s history-log viewing and branch creation are near-instant compared
with, for example, Subversion’s, which are sluggish even on a fast network connection.
Because Git stores changes locally, you’re not constrained by the work of others when
working in a team. For example, remote branch updates and merges can be done
independently so you can continue your edit/commit workflow without interruptions
while still downloading and examining any changes made by others.

 In Git, you can modify the history of branches and even rewrite commit data across
the entire repository. It’s often useful to be able to make lots of small commits, which
are later turned into a single commit, or to make commit messages contain more
information after the fact, and Git’s history rewriting enables this. Even with this flexi-
bility, every commit has a unique reference that survives rewriting or changes and
won’t be purged until it’s missing from all branches for at least 30 days. This means it’s
hard to accidentally lose work if it has been committed.

 Git’s main downsides are that the command-line application’s interface is often
counterintuitive: it makes frequent use of jargon that can only be adequately
explained by understanding Git’s internals. Additionally, the official documentation
can be hard to follow; it also uses jargon and has to detail the large number of options
for Git’s commands. To the credit of the Git community, both the UI and documenta-
tion around Git have improved hugely over the years. This book will help you under-
stand Git’s jargon and internal operations; these should help you to understand why
Git does what it does when you run its Git commands.

 Despite these downsides, the strengths of Git have proved too strong for many soft-
ware projects to resist. Google, Microsoft, Twitter, LinkedIn, and Netflix all use Git, as
do open source projects such as the Linux kernel (the first Git user), Perl, Postgre-
SQL, Android, Ruby on Rails, Qt, GNOME, KDE, Eclipse, and X.org.

 Many of these projects and many users of Git have also been introduced to and use
Git through a Git hosting provider. My favorite is GitHub, but various other paid and
free alternatives are available.

1.2 Initial setup
Once you’ve installed Git version 1.8 or above (as detailed in appendix A), the first
thing you need to do is to tell Git your name and email (particularly before creating
any commits). Rather than usernames, Git uses a name and an email address to iden-
tify the author of a commit.
www.it-ebooks.info

http://www.it-ebooks.info/

5TECHNIQUE 1 Creating a repository: git init
 My name is Mike McQuaid and my email address is mike@mikemcquaid.com, so I
would run this.

git config --global user.name "Mike McQuaid"

git config --global user.email mike@mikemcquaid.com

git config --global user.email

mike@mikemcquaid.com

All command output listings in this book show results like these:

B A run command prefixed with a #.

C In this case there was no output, so this line has been left intentionally blank.

D Command output following the run command. In this case, the output is the previ-
ously set value of user.email (my email address).

HOW CAN YOU FOLLOW THE LISTINGS? You can follow listings as you work
through the book by running the listed commands (in a Terminal on Unix or
Git Bash on Windows) and comparing the output to the listing. A POSIX-
incompatible shell (which includes the Windows Command Prompt without
Git Bash) may work for some listings but will fail for others that rely on POSIX
syntax (such as the use of single quotes).

IS THERE AN EXAMPLE REPOSITORY? The steps followed in the examples in
this book were used to create the demo repository GitInPracticeRedux on
GitHub at https://github.com/GitInPractice/GitInPracticeRedux. Note that
the current state of this repository is the state after following all the examples
in the book, so you should browse to the beginning of the history if you wish
to follow along with the listings.

Now Git is set up. To use it, you need to initialize a Git repository on your local machine.

Technique 1 Creating a repository: git init
A Git repository is the local collection of all the files related to a particular Git version
control system and contains a .git subdirectory in its root. Git keeps track of the state
of the files in the repository’s directory on disk.

 Git repositories store all their data on your local machine. Making commits, view-
ing history, and requesting differences between commits are all local operations that
don’t require a network connection. This makes all these operations much faster in
Git than with centralized version control systems such as Subversion.

 Typically you create a new repository by downloading another repository that
already exists (known as cloning by Git and introduced in technique 8), but let’s start
by initializing an empty, new local repository.

Listing 1.1 Setting a name and email address

A run commandB

No
outputC

Command outputD
www.it-ebooks.info

https://github.com/GitInPractice/GitInPracticeRedux
http://www.it-ebooks.info/

6 CHAPTER 1 Local Git
Problem

You wish to create a new local Git repository in a new subdirectory named GitIn-
PracticeRedux.

Solution

1 Change to the directory you wish to contain your new repository directory. For
example: cd /Users/mike/.

2 Run git init GitInPracticeRedux.

cd /Users/mike/
git init GitInPracticeRedux

Initialized empty Git repository in
/Users/mike/GitInPracticeRedux/.git/

You’ve initialized a new local Git repository named GitInPracticeRedux accessible
(on my machine) at /Users/mike/GitInPracticeRedux.

Discussion

We’re calling the repository GitInPracticeRedux rather than GitInPractice to dif-
ferentiate it from the book itself.

WHERE CAN YOU SEE THE FULL SYNTAX REFERENCES FOR GIT COMMANDS? All
git commands referenced in this book have complete references to all their
possible syntax and arguments in Git’s help. This can be accessed for a given
command by running the command suffixed with --help: for example, git
init --help. This book will cover only the most common and useful com-
mands and arguments.

git init can be run without any arguments to create the local Git repository in the
current directory.

1.3 .git subdirectory
Under the new Git repository directory, a .git subdirectory at /Users/mike/GitIn-
PracticeRedux/.git/ (for example) is created with various files and directories under it.

WHY IS THE .GIT DIRECTORY NOT VISIBLE? On some operating systems, directo-
ries starting with a period (.) such as .git are hidden by default. They can still
be accessed in the console using their full path (such as /Users/mike/GitIn-
PracticeRedux/.git/) but won’t show up in file listings in file browsers or by
running a command like ls /Users/mike/GitInPracticeRedux/.

Let’s view the contents of the new Git repository by changing to the directory contain-
ing the Git repository and running the find command.

Listing 1.2 Initializing a Git repository

Requested name

Repository path
www.it-ebooks.info

http://www.it-ebooks.info/

7 Creating a new commit: git add, git commit

cd /Users/mike/ && find GitInPracticeRedux

GitInPracticeRedux/.git/config

GitInPracticeRedux/.git/description

GitInPracticeRedux/.git/HEAD

GitInPracticeRedux/.git/hooks/applypatch-msg.sample

GitInPracticeRedux/.git/hooks/commit-msg.sample

GitInPracticeRedux/.git/hooks/post-update.sample

GitInPracticeRedux/.git/hooks/pre-applypatch.sample

GitInPracticeRedux/.git/hooks/pre-commit.sample

GitInPracticeRedux/.git/hooks/pre-push.sample

GitInPracticeRedux/.git/hooks/pre-rebase.sample

GitInPracticeRedux/.git/hooks/prepare-commit-msg.sample

GitInPracticeRedux/.git/hooks/update.sample

GitInPracticeRedux/.git/info/exclude

GitInPracticeRedux/.git/objects/info

GitInPracticeRedux/.git/objects/pack

GitInPracticeRedux/.git/refs/heads

GitInPracticeRedux/.git/refs/tags

B contains the configuration of the local repository.

C is a file that describes the repository.

D, I, and J contain a HEAD pointer, branch pointers, and tag pointers, respec-
tively, that point to commits.

E shows event hook samples (scripts that run on defined events). For example, pre-
commit is run before every new commit is made.

F contains files that should be excluded from the repository.

G and H contain object information and pack files, respectively, that are used for
object storage and reference.

You shouldn’t edit any of these files directly until you have a more advanced under-
standing of Git (or never). You’ll instead modify these files and directories by inter-
acting with the Git repository through Git’s filesystem commands, introduced in
chapter 3.

1.4 Creating a new commit: git add, git commit
To do anything useful in Git, you first need one or more commits in your repository. A
commit is created from the changes to one or more files on disk. The typical workflow
is that you’ll change the contents of files in a repository, review the diffs, add them to
the index, create a new commit from the contents of the index, and repeat this cycle.

Listing 1.3 Listing files created in a new repository

Local configurationB
Description fileC

HEAD pointerD
Event hooksE

Excluded filesF
Object informationG

Pack filesH
Branch pointersI

Tag pointersJ
www.it-ebooks.info

http://www.it-ebooks.info/

8 CHAPTER 1 Local Git
Git’s index is a staging area used to build up new commits. Rather than require
all changes in the working tree to make up the next commit, Git allows files to be
added incrementally to the index. The add/commit/checkout workflow can be seen
in figure 1.1.

Technique 2 Building a new commit in the index staging area: git add
Git doesn’t add anything to the index without your instruction. As a result, the first
thing you have to do with a file you want to include in a Git repository is request that
Git add it to the index.

Problem

You wish to add an existing file GitInPractice.asciidoc to the index staging area for
inclusion in the next commit.

Solution

1 Change directory to the Git repository, such as
cd /Users/mike/GitInPracticeRedux/.

2 Ensure that the file GitInPractice.asciidoc is in the current directory.
3 Run git add GitInPractice.asciidoc. There will be no output.

You’ve added GitInPractice.asciidoc to the index. If you were successful, the output of
running git status should resemble the following.

Local repository directory
/Users/mike/GitInPracticeRedux/.git/

Local working directory
/Users/mike/GitInPracticeRedux/

Local index file
/Users/mike/GitInPracticeRedux/.git/index

The repository stores the complete history of all the
commits that have been previously made.

The working directory contains the current state of all
the files that can be changed and versioned by Git.

git commit

git add

git checkout

The commit is built
from the contents of the
index and stored in the

repository.

Changes to files
are added to the
index to build the

next commit.

Other versions of files
are checked out from
branches or previous

commits.

Figure 1.1 Git add/commit/checkout workflow
www.it-ebooks.info

http://www.it-ebooks.info/

9TECHNIQUE 2 Building a new commit in the index staging area: git add

git add GitInPractice.asciidoc
git status

On branch master

Initial commit

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: GitInPractice.asciidoc

B is the first line of git status output. It shows the current branch, which, by default,
is always master. Don’t worry about creating branches for now; this will be covered
later, in technique 11.

C shows that no commits have yet been made, and git add is being used to build the
first commit.

D shows the new file you’ve just added to the index (the staging area for the next
commit).

Discussion

git add can also be passed directories as arguments instead of files. You can add
everything in the current directory and its subdirectories by running git add.

 When a file is added to the index, a file named .git/index is created (if it doesn’t
already exist). The added file contents and metadata are then added to the index file.
You’ve requested two things of Git here:

 Git should track the contents of the file as it changes (this isn’t done without an
explicit git add).

 The contents of the file when git add was run should be added to the index,
ready to create the next commit.

DOES GIT ADD NEED TO BE RUN MORE THAN ONCE? After you’ve added changes
for GitInPractice.asciidoc to the index staging area with git add, they will
be used in the next commit. After these changes to GitInPractice.asciidoc
have been committed with git commit (introduced in technique 2), if you
wish to add more changes to GitInPractice.asciidoc you’ll need to run git add
GitInPractice.asciidoc again. This is because, unlike in some version con-
trol systems, git add is used both to initially add a file to the Git repository
and to request that changes to the file be used in the next commit.

Now that the contents of the file have been added to the index, you’re ready to com-
mit it.

Listing 1.4 Adding a file to the index

Default branch outputB
First commitC

New file in the indexD
www.it-ebooks.info

http://www.it-ebooks.info/

10 CHAPTER 1 Local Git
Technique 3 Committing changes to files: git commit
Creating a commit stores the changes to one or more files. Each commit contains a
message entered by the author, details of the commit author, a unique commit refer-
ence (in Git, SHA-1 hashes such as 86bb0d659a39c98808439fadb8dbd594bec0004d) a
pointer to the preceding commit (known as the parent commit), the date the commit
was created, and a pointer to the contents of files when the commit was made (see fig-
ure 1.2). The file contents are typically displayed as the diff (the differences between
the files before and the files after the commit).

WHY DO THE ARROWS POINT BACKWARD? As you may have noticed, figure 1.2
uses arrows pointing from commits to the previous commit. The reason is
that commits contain a pointer to the parent commit and not the other way
around; when a commit is made, it has no idea what the next commit will be.

Problem

You wish to commit the contents of an existing file GitInPractice.asciidoc, which has
already been added to the index staging area. After this, you wish to make modifica-
tions to the file and commit them.

Message: ...

Author: ...

Unique reference:
85a5db...

Parent reference: ...

Date: ...

Diff: ...

Message:
Joke rejected by editor!

Author:
Mike McQuaid <mike@mikemcquaid.com>

Unique reference:
07fc4c3c3dba0834684812b9a0c39e83439c4094

Parent reference:
85a5db184266fb134f580c7784a3353fea0a1895

Date:
Fri Oct 11 18:30:00 2013

Diff:
--- a/GitInPractice.asciidoc
+++ b/GitInPractice.asciidoc
-Git In Practice makes
-...
-Git In Perfect!
+// TODO: think of funny first line that editor will
approve.

Parent
pointer

Parent
pointer

A description of the changes
made inside this commit

The name and email of the
author of this commit

A unique SHA-1 hash of this
commit and all the metadata

The unique reference of this
commit's parent commit

The date and time when
this commit was created

The changes to files
made in this commit

Figure 1.2 A typical commit broken down into its parts
www.it-ebooks.info

http://www.it-ebooks.info/

11TECHNIQUE 3 Committing changes to files: git commit
Solution

1 Change directory to the Git repository, such as cd /Users/mike/
GitInPracticeRedux/.

2 Ensure that the file GitInPractice.asciidoc is in the current directory and that its
changes were staged in the index with git add.

3 Run git commit --message 'Initial commit of book.'. The output should
resemble the following.

git commit --message 'Initial commit of book.'

[master (root-commit) 6576b68] Initial commit of book.
1 file changed, 2 insertions(+)
create mode 100644 GitInPractice.asciidoc

B is the name of the branch where the commit was made (the default, master), the
shortened SHA-1 (6576b68), and the commit message. (root-commit) means the
same as the Initial commit you saw earlier. It’s shown only for the first commit in
a repository and means this commit has no parent.

C shows the number of files changed and the number of lines inserted or deleted
across all the files in this commit.

D shows that a new file was created, along with the Unix file mode (100644). The file
mode is related to Unix file permissions and the chmod command, but it isn’t
important in understanding how Git works and so can be safely ignored.

You’ve made a new commit containing GitInPractice.asciidoc.

WHAT IS A SHA-1 HASH? A SHA-1 hash is a secure hash digest function that is
used extensively in Git. It outputs a 160-bit (20-byte) hash value, which is usu-
ally displayed as a 40-character hexadecimal string. The hash is used to
uniquely identify commits by Git by their contents and metadata. They’re
used instead of incremental revision numbers (like in Subversion) due to the
distributed nature of Git. When you commit locally, Git can’t know whether
your commit occurred before or after another commit on another machine,
so it can’t use ordered revision numbers. The full 40 characters are rather
unwieldy, so Git often shows shortened SHA-1s (as long as they’re unique in
the repository). Anywhere that Git accepts a SHA-1 unique commit reference,
it will also accept the shortened version (as long as the shortened version is
still unique within the repository).

Let’s create another commit:

1 Modify GitInPractice.asciidoc, and stage the changes in the index with git add.

Listing 1.5 Committing changes staged in the index

Branch, SHA-1,
messageB

Changed files, linesC

New file createdD
www.it-ebooks.info

http://www.it-ebooks.info/

12 CHAPTER 1 Local Git
2 Run git commit --message 'Add opening joke. Funny?'. The output should
resemble the following.

git add GitInPractice.asciidoc
git commit --message 'Add opening joke. Funny?'

[master 6b437c7] Add opening joke. Funny?
1 file changed, 3 insertions(+), 1 deletion(-)

B has a different shortened SHA-1, because this is a new commit with different con-
tents and metadata. No (root-commit) is shown, because this second commit has
the first as its parent.

C shows three insertions and one deletion because Git treats the modification of a
line as the deletion of an old line and insertion of a new one.

You’ve made modifications to GitInPractice.asciidoc and committed them.

Discussion

The --message flag for git commit can be abbreviated to -m (all abbreviations use a
single -). If this flag is omitted, Git opens a text editor (specified by the EDITOR or
GIT_EDITOR environment variable) to prompt you for the commit message. These
variables will also be used by other commands later in the book (such as interactive
rebase, introduced in technique 44) when requesting text input.

 git commit can be called with --author and --date flags to override the auto-set
metadata in the new commit.

 git commit can be called with a path (like git add) to do the equivalent of an add
followed immediately by a commit. It can also take the --all (or -a) flag to add all
changes to files tracked in the repository into a new commit. Although these methods
all save time, they tend to result in larger (and therefore worse) commits, so I recom-
mend avoiding their use until you’ve gotten used to using them separately. Technique 4
discusses several reasons small commits are better than large ones.

1.4.1 Object store

Git is a version control system built on top of an object store. Git creates and stores a col-
lection of objects when you commit. The object store is stored inside the Git repository.

 In figure 1.3, you can see the main Git objects we’re concerned with: commits, blobs,
and trees. There’s also a tag object, but don’t worry about tags until they’re introduced
in technique 36. Figure 1.2 showed an example of a commit object and how it stores
metadata and referenced file contents. The file-contents reference is actually a refer-
ence to a tree object. A tree object stores a reference to all the blob objects at a particular
point in time and other tree objects if there are any subdirectories. A blob object stores
the contents of a particular version of a particular single file in the Git repository.

Listing 1.6 Making a second commit

Branch, SHA-1,
messageB

Changed files, linesC
www.it-ebooks.info

http://www.it-ebooks.info/

13TECHNIQUE 4 Viewing history: git log, gitk, gitx
SHOULD OBJECTS BE INTERACTED WITH DIRECTLY? When using Git, you should
never need to interact with objects or object files directly. The terminology of
blobs and trees isn’t used regularly in Git or in this book, but it’s useful to
remember what these are so you can build a conceptual understanding of
what Git is doing internally. When things go well, this should be unnecessary;
but when you start to delve into more advanced Git functionality or Git spits
out a baffling error message, then remembering blobs and trees may help you
work out what has happened.

1.4.2 Parent commits

Every commit object points to its parent commit. The parent commit in a linear, branch-
less history is the one that immediately preceded it. The only commit that lacks a par-
ent commit is the initial commit: the first commit in the repository. By following the
parent commit, its parent, its parent, and so on, you can always get back from the cur-
rent commit to the initial commit. You can see an example of parent commit pointers
in figure 1.4.

 Now that you have two commits and have learned how they’re stored, we can start
looking at Git’s history.

Technique 4 Viewing history: git log, gitk, gitx
The history in Git is the complete list of all commits made since the repository was cre-
ated. The history also contains references to any branches, merges, and tags made within
the repository. These three will be covered in technique 11, technique 14, and tech-
nique 36.

 When you’re using Git, you’ll find yourself regularly checking the history: some-
times to remind yourself of your own work, sometimes to see why other changes were

commit object
8a0dcaf...

blob object
/README.txt

blob object
/src/graphics.rb

blob object
/src/window.rb

tree object/

tree object/src

Commit object contains:
- commit metadata for this version
- a reference to the root tree object
 for this version

Blob object contains:
- contents of the file for this version

Tree object contains:
- references to blob objects for each file in the
 directory for this version
- references to tree objects for each subdirectory
 of the directory for this version

Figure 1.3 Commit, blob,
and tree objects
www.it-ebooks.info

http://www.it-ebooks.info/

14 CHAPTER 1 Local Git
made in the past, and sometimes reading new changes that have been made by others.
In different situations, different pieces of data will be interesting, but all pieces of data
are always available for every commit.

 You may already have a sense for the fact that how useful the history is relies a great
deal on the quality of the data entered into it. If I made a commit once per year with
huge numbers of changes and a commit message of “fixes,” it would be fairly hard to
use the history effectively. Ideally, commits are small and well-described; follow these
two rules, and having a complete history becomes a very useful tool.

WHY ARE SMALL COMMITS BETTER? Sometimes it’s desirable to pick only some
changed files (or even some changed lines within files) to include in a com-
mit and leave the other changes to be added in a future commit. Commits
should be kept as small as possible. This allows their message to describe a sin-
gle change rather than multiple changes that are unrelated but were worked
on at the same time. Small commits keep the history readable; it’s easier when
looking at a small commit in the future to understand exactly why the change
was made. If a small commit is later found to be undesirable, it can be easily
reverted. This is much more difficult if many unrelated changes are clumped
together into a single commit and you wish to revert a single change.

HOW SHOULD COMMIT MESSAGES BE FORMATTED? The commit message is
structured like an email. The first line is treated as the subject and the rest as
the body. The commit subject is used as a summary for that commit when
only a single line of the commit message is shown, and it should be 50 charac-
ters or less. The remaining lines should be wrapped at 72 characters or less
and separated from the subject by a single, blank line. The commit message
should describe what the commit does in as much detail as is useful, in the
present tense.

Message: ...

Author: ...

Unique reference:
85a5db...

Parent reference: ...

Date: ...

Diff: ...

Message:
Joke rejected by editor!

Author:
Mike McQuaid <mike@mikemcquaid.com>

Unique reference:
07fc4c3c3dba0834684812b9a0c39e83439c4094

Parent reference:
85a5db184266fb134f580c7784a3353fea0a1895

Date:
Fri Oct 11 18:30:00 2013

Diff:
--- a/GitInPractice.asciidoc
+++ b/GitInPractice.asciidoc
-Git In Practice makes
-...
-Git In Perfect!
+// TODO: think of funny first line that editor will
approve.

Parent
commit
pointer

Every commit stores
a unique reference

and a parent reference.
The parent reference

is the unique reference
for the parent commit.

This reference is shown
here with the “parent

commit” pointer pointing
backward to the
previous commit.

Figure 1.4 Parent commit pointers
www.it-ebooks.info

http://www.it-ebooks.info/

15TECHNIQUE 4 Viewing history: git log, gitk, gitx
Let’s learn how to view the history of a repository.

Problem

You wish to view the commit history (also known as the log) of a repository.

Solution

1 Change directory to the Git repository, such as cd /Users/mike/
GitInPracticeRedux/.

2 Run git log and, if necessary, q to exit. The output should resemble the
following.

git log

commit 6b437c7739d24e29c8ded318e683eca8f03a5260

Author: Mike McQuaid <mike@mikemcquaid.com>

Date: Sun Sep 29 11:30:00 2013 +0100

Add opening joke. Funny?

commit 6576b6803e947b29e7d3b4870477ae283409ba71

Author: Mike McQuaid <mike@mikemcquaid.com>

Date: Sun Sep 29 10:30:00 2013 +0100

Initial commit of book.

The git log output lists all the commits that have been made on the current branch
in reverse chronological order (the most recent commit comes first):

B is the full 40-character commit reference.

C shows the name and email address set by the person who made the commit.

D shows the date and time when the commit was made.

E shows the commit message subject on the first line; the remaining lines are the
commit message body.

It’s also useful to graphically visualize history. Gitk is a tool for viewing the history of
Git repositories. It’s usually installed with Git but may need to be installed by your
package manager or separately. Its ability to graphically visualize Git’s history is partic-
ularly helpful when history becomes more complex (say, with merges and remote
branches). You can see it running on Windows 8.1 in figure 1.5.

 There are more attractive, up-to-date, and platform-native alternatives to gitk. On
Linux/Unix, I instead recommend using tools such as gitg for gtk+/GNOME integra-
tion and QGit for Qt/KDE integration. These can be installed using your package
manager.

 On OS X, there are tools such as GitX (and various forks of the project). OS X is my
platform of choice, so I’ll be using screenshots of the GitX-dev fork of GitX to discuss

Listing 1.7 History output

Unique SHA-1B

Commit authorC

Committed dateD

Full commit messageE
www.it-ebooks.info

http://www.it-ebooks.info/

16 CHAPTER 1 Local Git
history in this book, and I recommend you use it too if you use OS X. GitX-dev is avail-
able at https://github.com/rowanj/gitx and can be seen in figure 1.6.

Figure 1.5 Gitk on Windows 8.1

Figure 1.6 GitX-dev on OS X Mavericks
www.it-ebooks.info

https://github.com/rowanj/gitx
http://www.it-ebooks.info/

17TECHNIQUE 4 Viewing history: git log, gitk, gitx
To view the commit history with gitk or GitX, follow these steps:

1 Change directory to the Git repository, such as cd /Users/mike/
GitInPracticeRedux/.

2 Run gitk or gitx.

The GitX history (shown in figure 1.7) shows output similar to that of git log but in a
different format. You can also see the current branch and the contents of the current
commit, including the diff and parent SHA-1. There’s a lot of information that doesn’t
differ between commits, however.

In figure 1.8, you can see the GitX history graph output. This format is used throughout
the book to show the current state of the repository and/or the previous few commits.
It concisely shows the unique SHA-1, all branches (only master in this case), the current
local branch (shown in the GUI with an orange label), the commit message subject (the
first line of the commit message), and the commit’s author, date, and time.

Figure 1.7 GitX history output

Figure 1.8 GitX history graph output
www.it-ebooks.info

http://www.it-ebooks.info/

18 CHAPTER 1 Local Git
Discussion

git log can take revision or path arguments to specify the output history be shown
starting at the given revision or only include changes to the requested paths. git log
can take a --patch (or -p) flag to show the diff for each commit output. It can also
take --stat or --word-diff flag to show a diffstat or word diff. These terms will be
explained in technique 5.

1.5 Rewriting history
Git is unusual compared to many other version control systems in that it allows history
to be rewritten. This may seen surprising or worrying; after all, didn’t I just tell you
that the history contains the entire list of changes to the project over time? Sometimes
you may want to highlight only broader changes to files in a version control system
over a period of time instead of sharing every single change that was made in reaching
the final state.

 Figure 1.9 shows a fairly common use case for rewriting history with Git. If you
were working on some window code all morning and wanted your coworkers to see it
later (or wanted to include it in the project), there’s no need for everyone to see the
mistakes you made along the way. In the figure the commits are squashed together: so
instead of having three commits with the latter two fixing mistakes from the first com-
mit, we’ve squashed them together to create a single commit for the window feature.
You’d only rewrite history like this if you were working on a separate branch that
didn’t have other work from other people relying on it yet, because it has changed
some parent commits (so, without intervention, other people’s commits may point to
commits that no longer exist). Don’t worry too much about squashing work for now;
just remember this as a situation where you may want to rewrite history. Much later, in
technique 42, you’ll learn how to rewrite history and the cases where it’s useful and
safe to do so.

 What we’re generally interested in when reading the history (and why we clean it
up) is ensuring that the changes between commits are relevant (for example, don’t
make changes only to revert them immediately in the next commit five minutes later),
minimal, and readable. These changes are known as diffs.

 The history can give you a quick overview of all the previous commits. But query-
ing the differences between any two arbitrary commits can also sometimes be useful,
so let’s learn how to do that.

Technique 5 Viewing the differences between commits: git diff
A diff (also known as a change or delta) is the difference between two commits. In Git
you can request a diff between any two commits, branches, or tags. It’s often useful to
be able to request the difference between two parts of the history for analysis. For
example, if an unexpected part of the software has recently started misbehaving, you
can go back into the history to verify that it previously worked. If it did work previously,
then you may want to examine the diff between the code in the different parts of the
www.it-ebooks.info

http://www.it-ebooks.info/

19TECHNIQUE 5 Viewing the differences between commits: git diff
history to see what has changed. The various ways of displaying diffs in version control
typically allow you to narrow them down to the file, directory, and even committer.

Problem

You wish to view the differences between the previous commit and the latest.

Solution

1 Change directory to the Git repository, such as cd /Users/mike/
GitInPracticeRedux/.

2 Run git diff master~1 master (you may need to press Q to exit afterward).
The output should resemble the following.

git diff master~1 master

diff --git a/GitInPractice.asciidoc b/GitInPractice.asciidoc

index 48f7a8a..b14909f 100644

Listing 1.8 Differences between the previous commit and the latest

Fix test failure from
adding new window

Add missing new
window library file.

Add new window.

This commit added
new functionality.

Add missing new
window library file.

This commit was
cleaning up mistakes

made in the first commit.

Fix test failure from
adding new window

This commit was
also cleaning up more
mistakes made in the

first commit.

Add new button.

This commit
added more

new functionality.

The fourth commit
remains the same.

Add new window.

Because the seocnd and third
commits were fixing mistakes made
in the first commit, all three commits

can be squashed into a single,
correct commit.

Add new button.

Add new window.

The new first commit is the
combination of the original
first through third commits.

Add new button.

The second commit is the
original fourth commit. All that

has changed is that the
parent pointer now points

to a new commit.

Figure 1.9 Squashing multiple commits into a single commit

git diff commandB
Virtual diff
command

C

Index SHA-1 changesD
www.it-ebooks.info

http://www.it-ebooks.info/

20 CHAPTER 1 Local Git
--- a/GitInPractice.asciidoc

+++ b/GitInPractice.asciidoc

@@ -1,2 +1,4 @@

= Git In Practice

-// TODO: write book

+== Chapter 1

+Git In Practice makes Git In Perfect!

+// TODO: Is this funny?

B is the command that requests that Git show the diff between the commit before the
top of master (master~1) and the commit on top of master. Both master~1 and
master are refs and will be explained in section 1.7.

C is the invocation of the Unix diff command that Git is simulating. Git pretends
that it’s diffing the contents of two directories E and F, and C represents that.
The --git flag can be ignored, because it just shows this is the Git simulation and
the Unix diff command is never run.

D shows the difference in the contents of the working tree between these commits.
This can be safely ignored, other than noticing that these SHA-1s don’t refer to the
commits themselves.

E is the simulated directory for the master~1 commit.

F is the simulated directory for the master commit.

G can be ignored. These are used by the Unix diff command to identify what lines
the diff relates to for files that are too large to be shown in their entirety.

H shows the previous version of a line that differs between the commits. Recall that a
modified line is shown as a deletion and insertion.

I shows the new version of a line that differs between the commits.

J shows a new line that was added in the latter commit.

Discussion

git diff can take path arguments after a -- to request only the differences between
particular paths. For example, git diff master~1 master -- GitInPractice

.asciidoc shows only the differences to the GitInPractice.asciidoc file between the
previous and latest commits.

 git diff without an argument displays the differences between the current working
directory and the index staging area. git diff master displays the differences between
the current working directory and the last commit on the default master branch.

 If git diff is run with no arguments, it shows the differences between the index
staging area and the current state of the files tracked by Git: any changes you’ve made
but not yet added with git add.

Old virtual pathE
New virtual pathF

Diff offsetsG

Modified/deleted lineH
Modified/inserted lineI

Inserted lineJ
www.it-ebooks.info

http://www.it-ebooks.info/

21 Diff formats
1.6 Diff formats
Diffs are shown by default in Git (and in the previous example) in a format known as
a unified format diff. Diffs are used often by Git to indicate changes to files, for example
when navigating through history or viewing what you’re about to commit.

 Sometimes it’s desirable to display diffs in different formats. Two common alterna-
tives to a typical unified format diff are a diffstat and word diff.

git diff --stat master~1 master

GitInPractice.asciidoc | 4 +++-
1 file changed, 3 insertion(+), 1 deletions(-)

B shows the filename that has been changed, the number of lines changed in that
file, and +/- characters summarizing the overall changes to the file. If multiple
files were changed, this would show multiple filenames, and each would have the
lines changed for that file and +/- characters.

C lists a summary of totals of the number of files changes and lines inserted/deleted
across all files.

This diffstat shows the same changes as the unified format diff in the previous solu-
tion. Rather than showing the breakdown of exactly what has changed, it indicates
what files have changed and a brief overview of how many lines were involved in the
changes. This can be useful when getting a quick overview of what has changed with-
out needing all the detail of a normal unified format diff.

git diff --word-diff master~1 master

diff --git a/GitInPractice.asciidoc b/GitInPractice.asciidoc
index 48f7a8a..b14909f 100644
--- a/GitInPractice.asciidoc
+++ b/GitInPractice.asciidoc
@@ -1,2 +1,4 @@
= Git In Practice
{+== Chapter 1+}
{+Git In Practice makes Git In Perfect!+}
// TODO: [-write book-]{+Is this funny?+}

B shows a completely new line that was inserted, surrounded by {+}.

C shows some characters that were deleted, surrounded by [-]; and some lines that
were inserted, surrounded by {+}.

This word diff shows the same changes as the unified format diff in the previous solu-
tion. A word diff is similar to a unified format diff but shows modifications per word
rather than per line. This is particularly useful when viewing changes to plain text

Listing 1.9 Diffstat format

Listing 1.10 Word diff format

One file’s changesB

All files’ changesC

Added lineB

Modified lineC
www.it-ebooks.info

http://www.it-ebooks.info/

22 CHAPTER 1 Local Git
rather than code; in README files, we probably care more about individual word
choices than knowing that an entire line has changed, and the special characters
([-]{+}) aren’t used as often in prose as in code.

1.7 Refs
In Git, refs are the possible ways of addressing individual commits. They’re an easier
way to refer to a specific commit or branch when specifying an argument to a Git
command.

 The first ref you’ve already seen is a branch (which is master by default if you
haven’t created any other branches). Branches are pointers to specific commits. Ref-
erencing the branch name master is the same as referencing the SHA-1 of the commit
at the top of the master branch, such as the short SHA-1 6b437c7 in the last example.
Whenever you might type 6b437c7 in a command, you can instead type master, and
vice versa. Using branch names is quicker and easier to remember for referencing
commits than always using SHA-1s.

 Refs can also have modifiers appended. Suffixing a ref with ~1 is the same as saying
“one commit before that ref.” For example, master~1 is the penultimate commit on the
master branch: the short SHA-1 6576b68 in the last example. Another equivalent syntax
is master^, which is the same as master~1 (and master^^ is equivalent to master~2).

 The second ref is the string HEAD. HEAD always points to the top of whatever you cur-
rently have checked out, so it’s almost always the top commit of the current branch
you’re on. If you have the master branch checked out, then master and HEAD (and
6b437c7 in the last example) are equivalent. See the master/HEAD pointers demon-
strated in figure 1.10.

HEAD
ref

6b437c
HEAD

6b437c
(master)

6b437c
Add opening joke. Funny?

6576b6
Initial commit of book.

HEAD to current
branch pointer

Parent
commit pointer

First commit

master
branch ref

Second commit

Refs: 6576b6, master~1, master^,
HEAD~1, HEAD^

Refs: 6b437c, master, HEAD

Branch to
commit pointer

The branch pointer points
to a particular commit.

The HEAD pointer points
to the current branch.

Figure 1.10 HEAD,
master, and
modified refs
www.it-ebooks.info

http://www.it-ebooks.info/

23 Summary
These git diff invocations are all equivalent:

 git diff master~1 master
 git diff master~1..master
 git diff master~1..
 git diff master^ master
 git diff master~1 HEAD
 git diff 6576b68 6b437c7

You can also use the tool git rev-parse if you want to see what SHA-1 a given ref
expands to.

git rev-parse master

6b437c7739d24e29c8ded318e683eca8f03a5260

git rev-parse 6b437c7

6b437c7739d24e29c8ded318e683eca8f03a5260

There are more types of refs, such as remote branches and tags, but you don’t need to
worry about them now. They’ll be introduced in technique 6 and technique 36.

1.8 Summary
In this chapter, you learned the following:

 Why Git is a good and high-performance version control system
 How to create a new local repository using git init
 How to add files to Git’s index staging area using git add
 How to commit files to the Git repository using git commit
 How to view history using git log and gitk/gitx
 How to see the differences between commits using git diff
 How to use refs to reference commits

Listing 1.11 Parsing refs
www.it-ebooks.info

http://www.it-ebooks.info/

Remote Git
As you learned in technique 1, it’s possible to work entirely with Git as a local ver-
sion control system and never share changes with others. Usually, however, if you’re
using a version control system, you’ll want to share changes: from simply sending
files to a remote server for backup to collaborating as part of a large development
team. Team collaboration also requires knowledge of how to create and interact
with branches for working on different features in parallel. Let’s start by adding a
remote repository.

Technique 6 Adding a remote repository: git remote add
Typically when using version control, you’ll want to share your commits with other
people using other computers. With a traditional centralized version control system
(such as Subversion or CVS), the repository is usually stored on another machine.
As you make a commit, it’s sent over the network, checked to see whether it can

This chapter covers
 Downloading a remote repository

 Sending changes to and receiving changes
from a remote repository

 Creating and receiving branches

 Merging commits from one branch to another
24

www.it-ebooks.info

http://www.it-ebooks.info/

25TECHNIQUE 6 Adding a remote repository: git remote add
apply (there may be other changes since you last checked), and then committed to
the version control system where others can see it.

 With a distributed version control system like Git, every user has a complete repository
on their own computer. Although there may be a centralized repository to which peo-
ple send their commits, it isn’t accessed unless specifically requested. All commits,
branches, and history are stored offline unless users choose to send or receive com-
mits from another repository.

 Figure 2.1 shows the local Git cycle used in section 1.4. Files in the local working
directory are modified and added with git add to the index staging area. The contents
of the index staging area are committed with git commit to form a new commit, which
is stored in the local repository directory. Later, this repository can be queried to view
the differences between versions of files using git diff. In technique 12, you’ll also
see how to use git checkout to change to different local branches’ versions of files.

 Figure 2.2 shows the remote Git cycle we’ll look at in this chapter. As in the local
workflow, files are modified, are added, are committed, and can be checked out. But
there are now two repositories: a local repository and a remote repository.

 If your local repository needs to send data to or receive data from a repository on
another machine, it will need to add a remote repository. A remote repository is one
that’s typically stored on another computer. git push sends your new commits to it,
and git fetch retrieves from it any new commits made by others.

 In technique 1, you created a local repository on your machine. Please sign up for
a GitHub account and create a remote repository on GitHub (detailed in appendix B).

Local repository directory
/Users/mike/GitInPracticeRedux/.git/

Local working directory
/Users/mike/GitInPracticeRedux/

Local index file
/Users/mike/GitInPracticeRedux/.git/index

The repository stores the complete history of all the
commits that have been previously made.

The working directory contains the current state of all
the files that can be changed and versioned by Git.

git commit

git add

git checkout

The commit is built
from the contents of the
index and stored in the

repository.

Changes to files
are added to the
index to build the

next commit.

Other versions of files
are checked out from
branches or previous

commits.

Figure 2.1 Git add/commit/checkout cycle
www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 2 Remote Git
You can use another Git hosting provider, but this book will assume the use of GitHub
(because it’s the most widely used).

 The first action you’re concerned with is adding to your previous local repository a
reference for your newly created remote repository (also known as a remote) on
GitHub so you can push and fetch commits.

Problem

You wish to add the new GitInPractice remote repository to your current repository.

Solution

1 Change directory to the Git repository: for example, cd /Users/mike/
GitInPracticeRedux/.

2 Run git remote add origin with your repository URL appended. So if your
username is GitInPractice and your repository is named GitInPractice-
Redux, run git remote add origin https://github.com/GitInPractice/
GitInPracticeRedux.git. There will be no output.

Remote repository URL
http://github.com/GitInPractice/GitInPracticeRedux.git

Local repository directory
/Users/mike/GitInPractice/.git/

Local working directory
/Users/mike/GitInPracticeRedux/

The remote repository is just another local repository that
exists on another machine (in this case, a GitHub server).

git push git fetch
(or git pull)

git
checkout

git
commit

Local changes are
pushed up to the
remote repository.

Changes pushed to the
remote repository are fetched

to local repositories.

The local repository stores
all commits made locally

or retrieved remotely.

Local index file
/Users/mike/

GitInPracticeRedux/
.git/index

git add

Figure 2.2 Git add/commit/push/pull/checkout cycle
www.it-ebooks.info

http://www.it-ebooks.info/

27 Authoritative version storage
You can verify that this remote has been created successfully by running git remote
--verbose. The output should resemble the following.

git remote --verbose

origin https://github.com/GitInPractice/
GitInPracticeRedux.git (fetch)

origin https://github.com/GitInPractice/GitInPracticeRedux.git (push)

B specifies the URL that git fetch uses to fetch new remote commits.

C specifies the URL that git push uses to send new local commits.

WHAT HAPPENS WHEN THE FETCH AND PUSH URLS DIFFER? The fetch and push
URLs won’t differ unless they’ve been set to do so with the git remote com-
mand or by Git configuration. It’s almost never necessary to do this, so I won’t
cover it in this book.

You’ve added a remote named origin that points to the remote GitInPracticeRedux
repository belonging to the GitInPractice user on GitHub. You can now send and
receive changes from this remote. Nothing has been sent or received yet; the new
remote is effectively just a named URL pointing to the remote repository location.

Discussion

git remote can also be called with the rename and remove (or rm) subcommands to
alter remotes accordingly. git remote show queries and shows verbose information
about the given remote. git remote prune deletes any remote references to branches
that have been deleted from the remote repository by other users. Don’t worry about
this for now; remote branches will be covered in technique 13.

WHAT IS THE DEFAULT NAME FOR A REMOTE? You can have multiple remote
repositories connected to your local repository, so the remote repositories are
named. Typically, if you have a single remote repository, it's named origin.

2.1 Authoritative version storage
With centralized version control systems, the central server always stores the authorita-
tive version of the code. Clients to this repository typically only store a small propor-
tion of the history and require access to the server to perform most tasks. With a
distributed version control system like Git, every local repository has a complete copy
of the data. Which repository stores the authoritative version in this case? It turns out
that this is merely a matter of convention; Git itself doesn’t deem any particular repos-
itory to have any higher priority than another. Typically in organizations there is a cen-
tral location (as with a centralized version control) that is treated as the authoritative
version, and people are encouraged to push their commits and branches there.

Listing 2.1 Output: creating a remote repository

Fetch URLB
Push
URL

C

www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 2 Remote Git
 The lack of authority for a particular repository with distributed version control
systems is sometimes seen as a liability but can be a strength. The Linux kernel project
(for which Git was originally created) uses this to provide a network of trust and a
more manageable way of merging changes. When Linus Torvalds, the self-named
“benevolent dictator” of the project, tags a new release, this is generally considered a
new release of Linux. What’s in his repository (well, his publicly accessible one; he has
multiple repositories between various personal machines that he doesn’t make pub-
licly accessible) is generally considered to be what’s in Linux. Linus has trusted lieu-
tenants from whom he can pull and merge commits and branches. Rather than every
single merge to Linux needing to be done by Linus, he can leave some of it to his lieu-
tenants (who leave some to their sub-lieutenants, and so on), so everyone only needs
to worry about verifying and including the work of a small number of others. This par-
ticular workflow may not make sense in many organizations, but it demonstrates how
distributed version control systems can allow different ways of managing merges to
centralized version control.

Technique 7 Pushing changes to a remote repository: git push
You’ll eventually wish to send commits made in the local repository to a remote. To do
this always requires an explicit action. Only changes specifically requested are sent,
and Git (which can operate over HTTP, SSH, or its own protocol [git://]) ensures that
only the differences between the repositories are sent. As a result, you can push small
changes from a large local repository to a large remote repository very quickly as long
as they have most commits in common.

 Let’s push the changes you made in the repository in technique 3 to the newly cre-
ated remote you made in technique 6.

Problem

You wish to push the changes from the local GitInPracticeRedux repository to the
origin remote on GitHub.

Solution

1 Change directory to the Git repository: for example, cd /Users/mike/
GitInPracticeRedux/.

2 Run git push --set-upstream origin master, and enter your GitHub user-
name and password when requested. The output should resemble the following.

git push --set-upstream origin master

Username for 'https://github.com': GitInPractice

Password for 'https://GitInPractice@github.com':

Counting objects: 6, done.

Listing 2.2 Output: pushing and setting an upstream branch

Username entryB

Password entryC

Object preparation
and transmissionD
www.it-ebooks.info

http://www.it-ebooks.info/

29TECHNIQUE 7 Pushing changes to a remote repository: git push

Rem
Delta compression using up to 8 threads.

Compressing objects: 100% (5/5), done.

Writing objects: 100% (6/6), 602 bytes | 0 bytes/s, done.

Total 6 (delta 0), reused 0 (delta 0)

To https://github.com/GitInPractice/GitInPracticeRedux.git

* [new branch] master -> master

Branch master set up to track remote branch master from origin.

B and C are for your GitHub account. They may only be asked for the first time you
push to a repository, depending on your operating system of choice (which may
decide to save the password for you). They’re always required to push to reposito-
ries but are only required for fetch when fetching from private repositories.

D can be safely ignored in this and future listings; it’s Git communicating details on
how the files are being sent to the remote repository and isn’t worth understanding
beyond basic progress feedback.

E matches the push URL from the git remote --verbose output earlier. It’s where
Git has sent the local commits.

F indicates that this was a new branch on the remote. This is because the remote
repository on GitHub was empty until you pushed this; it had no commits and thus
no master branch yet. This was created by git push. master -> master indicates
that the local master branch (the first of the two) has been pushed to the remote
master branch (the second of the two). This may seem redundant, but it’s shown
here because it’s possible (but ill-advised due to the obvious confusion it causes) to
have local and remote branches with different names. Don’t worry about local or
remote branches for now; they will be covered starting in technique 11.

G is shown because the --set-upstream option was passed to git push. By passing
this option, you tell Git that you want the local master branch you’ve just pushed to
track the origin remote’s branch master. The master branch on the origin
remote (which is often abbreviated origin/master) is now known as the tracking
branch (or upstream) for your local master branch.

You have pushed your master branch’s changes to the origin remote’s master
branch.

Discussion

The git push --set-upstream (or -u) flag and explicit specification of origin and
master are only required the first time you push to create a remote branch (without
them, some versions of Git may output fatal: The current branch master has no
upstream branch.). After that, a git push with no arguments will default to running
the equivalent of git push origin master. This is set up by default by git clone
when you clone a repository.

ote
URL

E Local/remote
branchF

Set tracking branch G
www.it-ebooks.info

http://www.it-ebooks.info/

30 CHAPTER 2 Remote Git
git push can take an --all flag, which pushes all branches and tags (introduced later
in technique 36) at once. Be careful when doing this: you may push some branches
with work in progress.

 git push can take a --force flag, which disables some checks on the remote repos-
itory to allow rewriting of history. This is very dangerous. Don’t use this flag until after later
reading (and re-reading) technique 46.

 A tracking branch is the default push or fetch location for a branch. This means in
future you can run git push with no arguments on this branch, and it will do the
same thing as running git push origin master: push the current branch to the ori-
gin remote’s master branch.

 Figure 2.3 shows the state of the repository after the git push. There’s one addi-
tion since you last looked at it in section 1.7: the origin/master label. This is attached
to the commit that matches the currently known state of the origin remote’s master
branch.

 Figure 2.4 shows the remote repository on GitHub after the git push. The latest
commit SHA-1 there matches your current latest commit on the master branch shown
in figure 2.3 (although they’re different lengths; remember, SHA-1s can always be
shortened, as long as they remain unique). To update this in the future, you’d run git
push again to push any local changes to GitHub.

Technique 8 Cloning a remote/GitHub repository onto your local
machine: git clone

It’s useful to learn how to create a new Git repository locally and push it to GitHub.
But you’ll usually be downloading an existing repository to use as your local reposi-
tory. This process of creating a new local repository from an existing remote reposi-
tory is known as cloning a repository.

Figure 2.3 Local repository after git push

Figure 2.4 GitHub repository after git push
www.it-ebooks.info

http://www.it-ebooks.info/

31TECHNIQUE 8 Cloning a remote/GitHub repository onto your local machine: git clone
 Some other version control systems (such as Subversion) use the terminology of
checking out a repository. The reasoning for this is that Subversion is a centralized ver-
sion control system, so when you download a repository locally, you’re only download-
ing the latest revision from the repository. With Git, it’s known as cloning because
you’re making a complete copy of that repository by downloading all commits,
branches, and tags (introduced later in technique 36); you’re putting the complete
history of the repository onto your local machine.

 You just pushed the entire contents of the local repository to GitHub, so let’s
remove the local repository and re-create it by cloning the repository on GitHub.

Problem

You wish to remove the existing GitInPracticeRedux local repository and re-create it
by cloning from GitHub.

Solution

1 Change to the directory where you want the new GitInPracticeRedux reposi-
tory to be created—say, cd /Users/mike/ to create the new local repository in
/Users/mike/GitInPracticeRedux.

2 Run rm -rf GitInPracticeRedux to remove the existing GitInPracticeRedux
repository.

3 Run git clone with your repository URL appended. So if your username is Git-
InPractice and your repository is named GitInPracticeRedux, run git clone
https://github.com/GitInPractice/GitInPracticeRedux.git. The output
should resemble the following.

git clone https://github.com/GitInPractice/GitInPracticeRedux.git

Cloning into 'GitInPracticeRedux'...
remote: Counting objects: 6, done.
remote: Compressing objects: 100% (5/5), done.
remote: Total 6 (delta 0), reused 6 (delta 0)
Unpacking objects: 100% (6/6), done.
Checking connectivity... done

B is the directory in which the new GitInPracticeRedux local repository was created.

C can be safely ignored again (although if you’re wondering why there were six
objects, remember the different objects in the object store in technique 3).

You’ve cloned the GitInPracticeRedux remote repository and created a new local
repository containing all its commits in /Users/mike/GitInPracticeRedux.

 You can verify that this remote has been created successfully by running git
remote --verbose. The output should resemble the following.

Listing 2.3 Output: cloning a remote repository

Destination directoryB

Object preparation
and transmissionC
www.it-ebooks.info

http://www.it-ebooks.info/

32 CHAPTER 2 Remote Git

git remote --verbose

origin https://github.com/GitInPractice/GitInPracticeRedux.git (fetch)
origin https://github.com/GitInPractice/GitInPracticeRedux.git (push)

Discussion

git clone can take --bare and --mirror flags, which create a repository suitable for
hosting on a server. This will be covered more in chapter 13.

 git clone can also take a --depth flag followed by a positive integer, which creates
a shallow clone. A shallow clone is one where only the specified number of revisions are
downloaded from the remote repository; it’s limited, because it can’t be cloned/
fetched/pushed from or pushed to. This can be useful for reducing the clone time for
very large repositories.

 The --recurse-submodules (or --recursive) flag initializes all the Git submod-
ules in the repository. This will be covered more later in technique 54.

 Figure 2.5 shows the state of the repository after git clone. It’s identical to the state
after git push in figure 2.4. This shows that the clone was successful and the newly cre-
ated local repository has the same contents as the deleted old local repository.

Cloning a repository has also created a new remote called origin. origin is the
default remote and references the repository from which the clone originated (which
is https://github.com/GitInPractice/GitInPracticeRedux.git in this case).

 Now let’s learn how to pull new commits from the remote repository.

Technique 9 Pulling changes from another repository: git pull
git pull downloads the new commits from another repository and merges the
remote branch into the current branch. If you run git pull on the local repository,
you just see a message stating Already up-to-date. git pull in this case contacted the
remote repository, saw that there were no changes to be downloaded, and let you
know that it was up to date. This is expected, because this repository has been pushed
to but not updated since.

 To test git pull, let’s create another clone of the same repository, make a new
commit, and git push it. This will allow downloading new changes with git pull on
the original remote repository.

 To create another cloned, local repository and push a commit from it, do the
following:

Listing 2.4 Output: remote repository

Fetch URL

Push URL

Figure 2.5 Local repository after git clone
www.it-ebooks.info

https://github.com/GitInPractice/GitInPracticeRedux.git
http://www.it-ebooks.info/

33TECHNIQUE 9 Pulling changes from another repository: git pull

L
bra
up

M

1 Change to the directory where you want the new GitInPracticeRedux reposi-
tory to be created—for example, cd /Users/mike/ to create the new local
repository in /Users/mike/GitInPracticeReduxPushTest.

2 Run git clone with your repository URL and destination directory appended. So
if your username is GitInPractice, your repository is GitInPracticeRedux, and
the destination directory is named GitInPracticeReduxPushTest, run git clone
https://github.com/GitInPractice/GitInPractice-Redux.git GitInPrac-

ticeReduxPushTest to clone into the GitInPracticeReduxPushTest directory.
3 Change directory to the new Git repository: for example, cd /Users/mike/Git-

InPracticeReduxPushTest/.
4 Modify the GitInPractice.asciidoc file.
5 Run git add GitInPractice.asciidoc.
6 Run git commit --message 'Improve joke comic timing.'.
7 Run git push.

Now that you’ve pushed a commit to the GitInPracticeRedux remote on GitHub,
you can change back to your original repository and git pull from it. Keep the GitIn-
PracticeReduxPushTest directory, because you’ll use it later.

Problem

You wish to pull new commits into the current branch on the local GitInPractice-
Redux repository from the remote repository on GitHub.

Solution

1 Change directory to the original Git repository: for example, cd /Users/mike/
GitInPracticeRedux/.

2 Run git pull. The output should resemble the following.

git pull

remote: Counting objects: 5, done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 3 (delta 0), reused 3 (delta 0)

Unpacking objects: 100% (3/3), done.

From https://github.com/GitInPractice/GitInPracticeRedux

6b437c7..85a5db1 master -> origin/master

Updating 6b437c7..85a5db1

Fast-forward

GitInPractice.asciidoc | 5 +++--

1 file changed, 3 insertions(+), 2 deletions(-)

Listing 2.5 Output: pulling new changes

Object preparation
and transmission

B

Remote URLC

Remote branch updateD

ocal
nch

date

E

erge
type F

Lines changed in the fileG

Diff summaryH
www.it-ebooks.info

http://www.it-ebooks.info/

34 CHAPTER 2 Remote Git
B can be safely ignored again.

C matches the remote repository URL you saw used for git push.

D shows how the state of the origin remote’s master branch was updated, and that
this can be seen in origin/master. origin/master is a valid ref that can be used
with tools such as git diff, so git diff origin/master shows the differences
between the current working tree state and the origin remote’s master branch.

E shows that after git pull downloaded the changes from the other repository, it
merged the changes from the tracking branch into the current branch. In this
case, your master branch had the changes from the master branch on the remote
origin merged in. You can see in this case that the SHA-1s match those in D. It has
been updated to include the new commit (85a5db1).

F was a fast-forward merge, which means no merge commit was made. Fast-forward
merges will be explained in technique 14.

G is the same as the lines changed from git commit in technique 3 or git diff in
technique 5. It shows a summary of the changes that have been pulled into your
master branch.

H is the same as the diff summary from git commit in technique 3 or git diff in
technique 5.

Discussion

git pull can take a --rebase flag that performs a rebase rather than a merge. This
will be covered later in technique 45.

WHY DID A MERGE HAPPEN? It may be confusing that a merge has happened
here. Didn’t you just ask for the updates from that branch? You haven’t cre-
ated any other branches, so why did a merge happen? In Git, all remote
branches (including the default master branch) are linked to your local
branches only if the local branch is tracking the remote branch. As a result,
when you’re pulling changes from a remote branch into your current branch,
the result may sometimes be a situation where you’ve made local changes and
the remote branch has also received changes. In this case, a merge must be
made to reconcile the differing local and remote branches.

You can see from figure 2.6 that a new commit has been added to the repository and
that both master and origin/master have been updated.

 You’ve pulled the new commits from the GitInPracticeRedux remote repository
into your local repository, and Git has merged them into your master branch. Now
let’s learn how to download changes without applying them onto your master branch.

Figure 2.6 Local repository after git pull
www.it-ebooks.info

http://www.it-ebooks.info/

35TECHNIQUE 10 Fetching changes from a remote without modifying local branches: git fetch
Technique 10 Fetching changes from a remote without modifying
local branches: git fetch

Remember that git pull performs two actions: fetching the changes from a remote
repository and merging them into the current branch. Sometimes you may wish to
download the new commits from the remote repository without merging them into
your current branch (or without merging them yet). To do this, you can use the git
fetch command. git fetch performs the fetching action of downloading the new
commits but skips the merge step (which you can manually perform later).

 To test git fetch, let’s use the GitInPracticeReduxPushTest local repository
again to make another new commit and git push it. This will allow downloading new
changes with git fetch on the original remote repository.

 To push another commit from the GitInPracticeReduxPushTest repository, do
the following:

1 Change directory to the GitInPracticeReduxPushTest repository; for exam-
ple, cd /Users/mike/GitInPracticeReduxPushTest/.

2 Modify the GitInPractice.asciidoc file.
3 Run git add GitInPractice.asciidoc.
4 Run git commit --message 'Joke rejected by editor!'.
5 Run git push.

Now that you’ve pushed another commit to the GitInPracticeReduxPushTest
remote on GitHub, you can change back to your original repository and git fetch
from it. If you wish, you can now delete the GitInPracticeReduxPushTest repository
by running a command like rm -rf /Users/mike/GitInPracticeReduxPushTest/.

Problem

You wish to fetch new commits to the local GitInPracticeRedux repository from the
GitInPracticeRedux remote repository on GitHub without merging into your master
branch.

Solution

1 Change directory to the Git repository: cd /Users/mike/GitInPracticeRedux/.
2 Run git fetch. The output should resemble the following.

git fetch

remote: Counting objects: 5, done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 3 (delta 0), reused 3 (delta 0)

Unpacking objects: 100% (3/3), done.

From https://github.com/GitInPractice/GitInPracticeRedux

85a5db1..07fc4c3 master -> origin/master

Listing 2.6 Output: fetching new changes

Object preparation
and transmission

Remote URL

Remote branch update
www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 2 Remote Git
The git fetch output is the same as the first part of the git pull output. But the SHA-
1s are different again, because a new commit was downloaded. This is because git
fetch does effectively half of what git pull is doing. If your master branch is tracking
the master branch on the remote origin, then git pull is directly equivalent to run-
ning git fetch && git merge origin/master.

 You’ve fetched the new commits from the remote repository into your local reposi-
tory without merging them into your master branch.

Discussion

You can see from figure 2.7 that another new commit has been added to the reposi-
tory, but this time only origin/master has been updated; master has not. To see this,
you may need to select the origin remote and master remote branch in the GitX
sidebar. Selecting commits by remote branches is a feature sadly not available in gitk.

To clean up the local repository, let’s do another quick git pull to update the state of
the master branch based on the (already fetched) origin/master. To pull new com-
mits into the current branch on the local GitInPracticeRedux repository from the
remote repository on GitHub, do the following:

1 Change directory to the Git repository; for example, cd /Users/mike/
GitInPracticeRedux/.

2 Run git pull. The output should resemble the following.

git pull

Updating 85a5db1..07fc4c3

Fast-forward

GitInPractice.asciidoc | 4 +---

1 file changed, 1 insertion(+), 3 deletions(-)

This shows the latter part of the first git pull output you saw. No more changes were
fetched from the origin remote, and the local master branch hadn’t been updated.
As a result, this git pull behaved the same as running git merge origin/master.

 Figure 2.8 shows that the master branch has been updated to match the origin/
master latest commit once more.

Listing 2.7 Output: pull after fetch

Figure 2.7 Remote repository after git fetch

Local branch update
Merge type

Lines changed in the file
Diff summary
www.it-ebooks.info

http://www.it-ebooks.info/

37TECHNIQUE 11 Creating a new local branch from the current branch: git branch
SHOULD YOU USE PULL OR FETCH? I prefer to use git fetch over git pull.
This means I can continue to fetch regularly in the background and only
include these changes in my local branches when it’s convenient and using
the method I find most appropriate, which may be merging or rebasing (or
resetting, which you will see later in technique 42). Additionally, I sometimes
work in situations where I have no internet connection (such as on planes),
and using git fetch is superior in these cases; it can fetch changes without
requiring any human interaction in the case of a merge conflict, for example.

We’ve talked about local branches and remote branches but haven’t created any. Let’s
learn about how branches work and how to create them.

Technique 11 Creating a new local branch from the current branch:
git branch

When committing in Git, the history continues linearly; what was the most recent com-
mit becomes the parent commit for the new commit. This parenting continues back to
the initial commit in the repository. You can see an example of this in figure 2.9.

 Sometimes this linear approach isn’t enough for software projects. Sometimes you
may need to make new commits that aren’t yet ready for public consumption. This
requires branches.

 Branching allows two independent tracks through history to be created and com-
mitted to without either modifying the other. You can happily commit to an indepen-
dent branch without the fear of disrupting the work of another branch. This means
you can, for example, commit broken or incomplete features rather than having to

Figure 2.8 Local repository after git fetch and then git pull

Split chapters
into files.

Mike McQuaid
Sun Nov 10 2013

16:10:22

Rename
Chapter 1 file.
Mike McQuaid

Sun Nov 10 2013
16:11:50

Add first line.
Mike McQuaid
Nov 09 2013

11:31:22

Start
Chapter 2.

Mike McQuaid
Nov 09 2013

11:31:22

Started
first chapter
so fix TODO.

Mike McQuaid
Nov 09 2013

11:35:20

master branch

Commits separating into two files

Commits adding new content

Figure 2.9 Committing without using branches
www.it-ebooks.info

http://www.it-ebooks.info/

38 CHAPTER 2 Remote Git
wait for others to be ready for their commits. It also means your changes can be iso-
lated from changes made by others until you’re ready to integrate them into your
branch. Figure 2.10 shows the same commits as figure 2.9 if they were split between
two branches instead for isolation.

 When a branch is created and new commits are made, that branch advances to
include the new commits. In Git, a branch is no more than a pointer to a particular
commit. This is unlike other version control systems such as Subversion, in which
branches are subdirectories of the repository.

 The branch is pointed to a new commit when a new commit is made on that
branch. A tag is similar to a branch, but it points to a single commit and remains
pointing to the same commit even when new commits are made. Typically tags are
used for annotating commits; for example, when you release version 1.0 of your soft-
ware, you may tag the commit used to build the 1.0 release with a 1.0 tag. This means
you can come back to it in the future, rebuild that release, or check how certain things
worked without fear that it will be somehow changed automatically.

 Branching allows two independent tracks of development to occur at once. In Fig-
ure 2.10, the separate-files branch was used to separate the content from a single
file and split it into two new files. This allowed refactoring of the book structure to be
done in the separate-files branch while the default branch (known as master in
Git) could be used to create more content. In version control systems like Git, where
creating a branch is a quick, local operation, branches may be used for every indepen-
dent change.

 Some programmers create new branches whenever they work on a new bug fix or
feature and then integrate these branches at a later point, perhaps after requesting
that others review their changes. This means even for programmers working without a
team, it can be useful to have multiple branches in use at any one point. For example,

Split chapters into files.
Mike McQuaid

Sun Nov 10 2013 16:10:22

Rename Chapter 1 file.
Mike McQuaid

Sun Nov 10 2013 16:11:50

Add first line.
Mike McQuaid

Nov 09 2013 11:31:22

Start Chapter 2.
Mike McQuaid

Nov 09 2013 11:31:22

Started first chapter
so fix TODO.

Mike McQuaid
Nov 09 2013 11:35:20

separate-files
branch

master
branch

Commits separating into two files

Commits adding new content

Figure 2.10 Committing to multiple branches
www.it-ebooks.info

http://www.it-ebooks.info/

39TECHNIQUE 11 Creating a new local branch from the current branch: git branch
you may be working on a new feature but realize that a critical error in your applica-
tion needs to be fixed immediately. You can quickly create a new branch based off the
version used by customers, fix the error, and switch back to the branch to which you’d
been committing the new feature.

Problem

You wish to create a new local branch named chapter-two from the current (master)
branch.

Solution

1 Change directory to the Git repository: for example, cd /Users/mike/
GitInPracticeRedux/.

2 Run git branch chapter-two. There will be no output.

You can verify that the branch was created by running git branch, which should have
the following output.

git branch

chapter-two

* master

B was created with the expected name.

C is indicated by the * prefix, which shows you’re still on the master branch as
before. git branch creates a new branch but doesn’t change to it.

You’ve created a new local branch named chapter-two that currently points to the
same commit as master.

Discussion

git branch can take a second argument with the start point for the branch. This defaults
to the current branch you’re on; for example, git branch chapter-two is the equiva-
lent of git branch chapter-two master if you’re already on the master branch. This
can be used to create branches from previous commits, which is sometimes useful if, say,
the current master branch state has broken unit tests that you need to be working.

 git branch can take a --track flag, which, combined with a start point, sets the
upstream for the branch (similar to git push --set-upstream but without pushing
anything remotely yet).

 You can see from figure 2.11 that there’s a new branch label for the chapter-two
branch. In the GitX GUI, the label colors indicate the following:

 Orange —The currently checked-out local branch
 Green —A non-checked-out local branch
 Blue —A remote branch

Listing 2.8 Output: listing branches

New branchB
Current branchC
www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 2 Remote Git
Note that print editions of this book are grayscale, so these colors are not visible.
Instead, please compare them to GitX on your computer. Figure 2.12 shows how these
two branch pointers point to the same commit.

 You’ve seen how git branch creates a local branch but doesn’t change to it. To do
that requires using git checkout.

CAN BRANCHES BE NAMED ANYTHING? A branch can’t have spaces or two con-
secutive dots (..) anywhere in its name, so chapter..two is an invalid branch
name and git branch will refuse to create it. The dots case is due to the spe-
cial meaning of .. for a commit range for the git diff command (which you
saw used in section 1.7).

WHAT NAMES SHOULD YOU USE FOR BRANCHES? Name branches according to
their contents. For example, the chapter-two branch you created indicates
that the commits in this branch will reference the second chapter. I recom-
mend a format of describing the branch’s purpose in multiple words
separated by hyphens. For example, a branch that is performing cleanup on
the test suite should be named something like test-suite-cleanup.

Technique 12 Checking out a local branch: git checkout
Once you’ve created a local branch, you’ll want to check out the contents of another
branch into Git’s working directory. The state of all the current files in the working
directory will be replaced with the new state based on the revision to which the new
branch currently points.

Figure 2.11 Local repository after git branch chapter-two

85a5db1
(chapter-two)

85a5db1
Improve joke comic timing.

6b437c7
Add opening joke. Funny? Parent

commit pointer

85a5db1
(master)

chapter-two
branch ref

master
branch ref

Branch to
commit pointer

Branch to
commit pointer

The branch pointers point
to a particular commit.

Figure 2.12 Branch pointers
www.it-ebooks.info

http://www.it-ebooks.info/

41TECHNIQUE 12 Checking out a local branch: git checkout
Problem

You wish to change to a local branch named chapter-two from the current (master)
branch.

Solution

1 Change directory to the Git repository; for example, cd /Users/mike/
GitInPracticeRedux/.

2 Run git checkout chapter-two. The output should be Switched to branch
'chapter-two'.

You’ve checked out the local branch named chapter-two and moved from the master
branch.

Discussion

As mentioned earlier, some other version control systems (such as Subversion) use
checkout to refer to the initial download from a remote repository, but git checkout
is used here to change branches. This may be slightly confusing until we look at Git’s
full remote workflow. Figure 2.13 shows Git’s local workflow again. Under closer
examination, git checkout and svn checkout behave similarly; both check out the
contents of a version control repository into the working directory, but Subversion’s
repository is remote and Git’s repository is local. In this case, git checkout is request-
ing the checkout of a particular branch so the current state of that branch is checked
out into the working directory.

Local repository directory
/Users/mike/GitInPracticeRedux/.git/

Local working directory
/Users/mike/GitInPracticeRedux/

Local index file
/Users/mike/GitInPracticeRedux/.git/index

The repository stores the complete history of all the
commits that have been previously made.

The working directory contains the current state of all
the files that can be changed and versioned by Git.

git commit

git add

git checkout

The commit is built
from the contents of the
index and stored in the

repository.

Changes to files
are added to the
index to build the

next commit.

Other versions of files
are checked out from
branches or previous

commits.

Figure 2.13 Git add/commit/checkout workflow
www.it-ebooks.info

http://www.it-ebooks.info/

42 CHAPTER 2 Remote Git
Afterward, the HEAD pointer (shown in figure 2.14) is updated to point to the cur-
rent, chapter-two branch pointer, which in turn points to the top commit of that
branch. The HEAD pointer moved from the master to the chapter-two branch when
you ran git checkout chapter-two, setting chapter-two to be the current branch.

 Make sure you’ve committed any changes on the current branch before checking
out a new branch. If you don’t do this, git checkout will refuse to check out the new
branch if there are changes in that branch to a file with uncommitted changes. If you
wish to overwrite these uncommitted changes anyway, you can force this with git
checkout --force. Another solution is git stash, which allows temporary storage of
changes and will be covered later in technique 23.

Technique 13 Pushing a local branch remotely
Now that you’ve created a new branch and checked it out, it would be useful to push
any new commits made to the remote repository. To do this requires using git push
again.

Problem

You wish to push the changes from the local chapter-two branch to create the remote
branch chapter-two on GitHub.

85a5db1
(chapter-two)

85a5db1
Improve joke comic timing.

6b437c7
Add opening joke. Funny? Parent

commit pointer

85a5db1
(master)

HEAD to current
branch pointer

85a5db1
HEAD

HEAD
ref

master
branch ref

chapter-two
branch ref

Branch to
commit pointer

Branch to
commit pointer

The HEAD pointer points
to the current branch.

The branch pointers point
to a particular commit.

Figure 2.14 HEAD pointer with multiple branches
www.it-ebooks.info

http://www.it-ebooks.info/

43TECHNIQUE 13 Pushing a local branch remotely
Solution

1 Change directory to the Git repository, such as cd /Users/mike/
GitInPracticeRedux/.

2 Run git checkout chapter-two to ensure that you’re on the chapter-two
branch.

3 Run git push --set-upstream origin chapter-two. The output should resem-
ble the following.

git push --set-upstream origin chapter-two

Total 0 (delta 0), reused 0 (delta 0)

To https://github.com/GitInPractice/GitInPracticeRedux.git

* [new branch] chapter-two -> chapter-two

Branch chapter-two set up to track remote branch

chapter-two from origin.

The output is much the same as it was for the previous git push run:

B (although still ignorable) shows that no new objects were sent. The reason is that
the chapter-two branch still points to the same commit as the master branch; it’s
effectively a different name (or, more accurately, ref) pointing to the same commit.
As a result, no more commit objects have been created, and therefore no more
were sent.

C has chapter-two as the branch name.

D has chapter-two as the branch name.

You’ve pushed your local chapter-two branch and created a new remote branch
named chapter-two on the remote repository.

Discussion

Remember that now the local chapter-two branch is tracking the remote chapter-two
branch, so any future git pull or git push on the chapter-two branch will use the
origin remote’s chapter-two branch. As you’ll hopefully have anticipated, figure 2.15
shows the addition of another remote branch named origin/chapter-two.

Listing 2.9 Output: pushing and setting an upstream branch

Object preparation
and transmission

B

Local/remote branchC

Set tracking branchD

Figure 2.15 Local repository after git push --set-upstream origin chapter-two
www.it-ebooks.info

http://www.it-ebooks.info/

44 CHAPTER 2 Remote Git
Technique 14 Merging an existing branch into the current branch:
git merge

At some point, you have a branch you’re done with, and you want to bring all the com-
mits made on it into another branch. This process is known as a merge.

 When a merge is requested, all the commits from another branch are pulled into
the current branch. Those commits then become part of the history of the branch.
Note from figure 2.16 that the commit in which the merge is made has two parent
commits rather than one; it joins two separate paths through the history into a sin-
gle one. After a merge, you may decide to keep the existing branch to add more
commits to it and perhaps merge again at a later point (only the new commits will
need to be merged next time). Alternatively, you can delete the branch and make
future commits on Git’s default master branch, and create another branch when
needed in the future.

Problem

You wish to make a commit on the local branch named chapter-two and merge this
into the master branch.

Solution

1 Change directory to the Git repository; for example, cd /Users/mike/
GitInPracticeRedux/.

2 Run git checkout chapter-two to ensure that you’re on the chapter-two
branch.

3 Modify the contents of GitInPractice.asciidoc, and run git add GitInPractice
.asciidoc.

4 Run git commit --message 'Start Chapter 2.'.

Split chapters into files.
Mike McQuaid

Sun Nov 10 2013 16:10:22

Rename Chapter 1 file.
Mike McQuaid

Sun Nov 10 2013 16:11:50

Add first line.
Mike McQuaid

Nov 09 2013 11:31:22

Start Chapter 2.
Mike McQuaid

Nov 09 2013 11:31:22

Started first chapter
so fix TODO.

Mike McQuaid
Nov 09 2013 11:35:20

Merge branch
‘separate-files’
Mike McQuaid

Nov 10 2013 17:52:07

separate-files
branch

master
branch

Commits separating into two files

Commits adding new content Merge commit.
Brings all commits from the
separate-files branch into

the master branch. Figure 2.16 Merging a branch into master
www.it-ebooks.info

http://www.it-ebooks.info/

45TECHNIQUE 14 Merging an existing branch into the current branch: git merge

M

5 Run git checkout master to check out the branch you wish to merge chapter-
two into.

6 Run git merge chapter-two. The output should resemble the following.

git merge chapter-two

Updating 07fc4c3..ac14a50
Fast-forward
GitInPractice.asciidoc | 2 ++

1 file changed, 2 insertions(+)

The output may seem familiar from the git pull output. Remember, this is because
git pull actually does a git fetch && git merge:

B shows the changes that have been merged into the local master branch. Note that
the SHA-1 has been updated from the previous master SHA-1 (07fc4c3) to the cur-
rent chapter-two SHA-1 (ac14a50).

C was a fast-forward merge. This means no merge commit (a commit with multiple par-
ents) was needed, so none was made. The chapter-two commits were made on top
of the master branch, but no more commits had been added to the master branch
before the merge was made. In Git’s typical language: the merged commit (tip of
the chapter-two branch) is a descendant of the current commit (tip of the master
branch). If there had been another commit on the master branch before merging,
then this merge would have created a merge commit. If there had been conflicts
between the changes made in both branches that couldn’t automatically be
resolved, then a merge conflict would have been created and had to be resolved.

D shows a summary of the changes that have been merged into your master branch
from the chapter-two branch.

You’ve merged the chapter-two branch into the master branch.

Discussion

This brings the commit that was made in the chapter-two branch into the master
branch.

WHAT IF YOU TRY TO MERGE THE SAME COMMIT INTO A BRANCH MULTIPLE TIMES?
git merge won’t merge the same commit into a branch multiple times; it will
exit and output Already up-to-date. rather than performing the merge.

You can see from figure 2.17 that the chapter-two and master branches point to the
same commit once more.

Listing 2.10 Output: merging a branch

Local branch updateBerge
type

C

Diff summaryD
www.it-ebooks.info

http://www.it-ebooks.info/

46 CHAPTER 2 Remote Git

Incom

2.2 Merge conflicts
So far, merges may have sounded too good to be true; you can work on multiple
things in parallel and combine them at any later point in any order. Not so fast, my
merge-happy friend; I haven’t told you about merge conflicts yet.

 A merge conflict occurs when both branches involved in the merge have changed
the same part of the same file. Git will try to automatically resolve these conflicts but
sometimes is unable to do so without human intervention. This case produces a
merge conflict.

Chapter 1

<<<<<<< HEAD

It is a truth universally acknowledged, that a single person in

possession of good source code, must be in want of a version control

system.

Chapter 2

// TODO: write two chapters

=======

// TODO: think of funny first line that editor will approve.

>>>>>>> separate-files

When a merge conflict occurs, the version control system goes through any files that
have conflicts and inserts something similar to the preceding markers. These markers
indicate the versions of the file on each branch:

B is provided only for context in this example.

C starts the section containing the lines from the current branch (referenced by HEAD
here).

D shows a line from the incoming branch’s commit(s).

E starts the section containing the lines from the incoming branch.

F shows a line from the current branch’s commit(s).

G ends the section containing the lines from the incoming branch (referenced by
separate-files: the name of the branch being merged in).

Listing 2.11 Merge conflict in Git

Figure 2.17 Local repository after git merge chapter-two

Unchanged lineB
Incoming markerC

ing
line D

Branch separatorE
Current
version

F

Current markerG
www.it-ebooks.info

http://www.it-ebooks.info/

47TECHNIQUE 15 Deleting a remote branch
HOW CAN CONFLICT MARKERS BE FOUND QUICKLY? When searching a large file
for the merge-conflict markers, you can enter <<<< in your text editor’s Find
tool to locate them quickly.

The person performing the merge must manually edit the file to produce the cor-
rectly merged output, save it, and mark the merge as resolved. Sometimes, resolving
the conflict involves picking all the lines of a single version: either the previous ver-
sion’s lines or the new branch’s lines. Other times, resolving the conflict involves com-
bining some lines from the previous version and some lines from the new branch. In
cases where other files have been edited (as in this example), it may also involve put-
ting some of these lines into other files.

 When conflicts have been resolved, a merge commit can be made. This stores the two
parent commits and the conflicts that were resolved so they can be inspected in the
future. Unfortunately, sometimes people pick the wrong option or merge incorrectly,
so it’s good to be able to later see what conflicts they had to resolve.

 We’ll cover resolving merge conflicts in more detail later in technique 34.

2.3 Rebasing
A rebase is a method of rewriting history in Git that is similar to a merge. A rebase
involves changing the parent of a commit to point to another.

 Figure 2.18 shows a rebase of the separate-files branch onto the master branch.
The rebase operation has changed the parent of the first commit in the separate-
files branch to be the last commit in the master branch. This means all the content
changes from the master branch are now included in the separate-files branch,
and any conflicts were manually resolved but weren’t stored (as they would be in a
merge conflict).

 We’ll cover rebasing in more detail later in technique 43. All you need to remem-
ber for now is that it’s a different approach to a merge that can be used for a similar
outcome (pulling changes from one branch into another).

Technique 15 Deleting a remote branch
Now that the chapter-two branch has been merged into the master branch, the new
commit that was made in the chapter-two branch is in the master branch. This
means you can push the master branch to push all the chapter-two changes to ori-
gin/master. Once this is done (and assuming you don’t want to make any more com-
mits to the chapter-two branch), origin/chapter-two can be safely deleted.

WHY DELETE THE BRANCHES? Sometimes branches in version control systems
are kept for a long time, and sometimes they’re temporary. A long-running
branch may be one that represents the version deployed to a particular
server. A short-running branch may be a single bug fix or feature that has
been completed. In Git, once a branch has been merged, the history of the
branch is still visible in the history, and the branch can be safely deleted,
www.it-ebooks.info

http://www.it-ebooks.info/

48 CHAPTER 2 Remote Git
because a merged branch is, at that point, just a ref to an existing commit in
the history of the branch it was merged into.

Problem

You wish to push the current master branch and delete the branch named chapter-
two on the remote origin.

Solution

1 Change directory to the Git repository; for example, cd /Users/mike/
GitInPracticeRedux/.

2 Run git checkout master to ensure that you’re on the master branch.
3 Run git push.
4 Run git push --delete origin chapter-two. The output should resemble the

following.

separate-files
branch

master
branch

“Start Chapter 2.” is the parent commit.

The separate-files branch is rebased
onto the master branch.

Split chapters
into files.

Mike McQuaid
Sun Nov 10 2013

16:10:22

Rename
Chapter 1 file.
Mike McQuaid

Sun Nov 10 2013
16:11:50

Add first line.
Mike McQuaid
Nov 09 2013

11:31:22

Start
Chapter 2.

Mike McQuaid
Nov 09 2013

11:31:22

Started
first chapter
so fix TODO.

Mike McQuaid
Nov 09 2013

11:35:20

master
branch

separate-files
branch

“Started first chapter so fix TODO.”
is the parent commit.

Split chapters
into files.

Mike McQuaid
Sun Nov 10 2013

16:10:22

Rename
Chapter 1 file.
Mike McQuaid

Sun Nov 10 2013
16:11:50

Add first line.
Mike McQuaid
Nov 09 2013

11:31:22

Start
Chapter 2.

Mike McQuaid
Nov 09 2013

11:31:22

Started
first chapter
so fix TODO.

Mike McQuaid
Nov 09 2013

11:35:20

Figure 2.18 Rebasing a branch on top of master
www.it-ebooks.info

http://www.it-ebooks.info/

49TECHNIQUE 16 Deleting the current local branch after merging
git push origin :chapter-two

To https://github.com/GitInPractice/GitInPracticeRedux.git
- [deleted] chapter-two

B shows the remote repository from which the branch was deleted.

C shows the name of the branch (chapter-two) that has been deleted from the
remote repository.

You have deleted the chapter-two branch from the remote repository.

Discussion

In figure 2.19, you can see that origin/master has been updated to the same commit
as master and that origin/chapter-two has been removed.

Technique 16 Deleting the current local branch after merging
The chapter-two branch has all its commits merged into the master branch, and the
remote branch has been deleted, so the local branch can now be deleted too.

Problem

You wish to delete the local branch named chapter-two.

Solution

1 Change directory to the Git repository; for example, cd /Users/mike/
GitInPracticeRedux/.

2 Run git checkout master to ensure that you’re on the master branch.
3 Run git branch --delete chapter-two. The output should be Deleted branch

chapter-two (was ac14a50).

You’ve deleted the chapter-two branch from the local repository.

Discussion

Figure 2.20 shows the final state with all evidence of the chapter-two branch removed
(other than the commit message).

Listing 2.12 Output: deleting a remote branch

Remote URLB
Deleted branchC

Figure 2.19 Local repository after git push origin :chapter-two
www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 2 Remote Git
WHY DELETE THE REMOTE BRANCH BEFORE THE LOCAL BRANCH? You had merged
all the chapter-two changes into the master branch and pushed this to origin/
master. As a result, the chapter-two and origin/chapter-two branches are
no longer needed. But Git will refuse to delete a local branch with git branch
--delete if it hasn’t been merged into the current branch or its changes
haven’t been pushed to its tracking branch (origin/chapter-two in this case).
Deleting origin/chapter-two first means the local chapter-two branch can
be deleted with git branch --delete without Git complaining that chapter-
two has changes that need to be pushed to origin/chapter-two.

2.4 Summary
In this chapter, you learned the following:

 How to push your local repository to a remote repository
 How to clone an existing remote repository
 How to push and pull changes to/from a remote repository
 That fetching allows you to obtain changes without modifying local branches
 That pulling is equivalent to fetching and then merging
 How to check out local and remote branches
 How to merge branches and then delete from the local and remote repositories

Figure 2.20 Local repository after git branch --delete chapter-two
www.it-ebooks.info

http://www.it-ebooks.info/

Part 2

Git essentials

Part 2 (chapters 3–6) will cover the most essential commands to learn when
using Git either alone or with a team. It’s here that you’ll start to see some of the
more powerful differences between Git and other version control systems,
including advanced branching capabilities and history rewriting.

 This part covers the following topics:

 How to delete, move, and rename versioned files and directories
 How to ignore, reset, and temporarily stash certain files and changes
 How to tweak history output to display only the information you need
 How to find out what person or commit caused a particular bug
 How to easily resolve merge conflicts
 How to tag new versions of software
 How to cherry-pick or revert individual commits
 How to view Git’s history even after rewriting
 How to re-create branches and commits on top of other commits
 How to avoid losing your work
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Filesystem interactions
When working with a project in Git, you’ll sometimes want to move, delete, change,
and/or ignore certain files in your working directory. You could mentally keep
track of the state of important files and changes, but this isn’t a sustainable
approach. Instead, Git provides commands for performing filesystem operations
for you.

 Understanding the Git filesystem commands will allow you to quickly perform
these operations rather than being slowed down by Git’s interactions. Let’s start
with the most basic file operations: renaming or moving a file.

This chapter covers
 Renaming, moving, and removing versioned

files or directories

 Telling Git to ignore certain files or changes

 Deleting all untracked or ignored files or
directories

 Resetting all files to their previously committed
state

 Temporarily stashing and reapplying changes
to files
53

www.it-ebooks.info

http://www.it-ebooks.info/

54 CHAPTER 3 Filesystem interactions

Co
me
Technique 17 Renaming or moving a file: git mv
Git keeps track of changes to files in the working directory of a repository by their
name. When you move or rename a file, Git doesn’t see that a file was moved; it sees
that there’s a file with a new filename, and the file with the old filename was deleted
(even if the contents remain the same). As a result, renaming or moving a file in Git is
essentially the same operation; both tell Git to look for an existing file in a new loca-
tion. This may happen if you’re working with tools (such as IDEs) that move files for
you and aren’t aware of Git (and so don’t give Git the correct move instruction).

 Sometimes you’ll still need to manually rename or move files in your Git reposi-
tory, and want to preserve the history of the files after the rename or move operation.
As you learned in technique 4, readable history is one of the key benefits of a version
control system, so it’s important to avoid losing it whenever possible. If a file has had
100 small changes made to it with good commit messages, it would be a shame to
undo all that work just by renaming or moving a file.

Problem

In your Git working directory, you wish to rename a previously committed file named
GitInPractice.asciidoc to 01-IntroducingGitInPractice.asciidoc and commit the newly
renamed file.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git mv GitInPractice.asciidoc 01-IntroducingGitInPractice
.asciidoc. There will be no output.

3 Run git commit --message 'Rename book file to first part file.'. The out-
put should resemble the following.

git commit --message 'Rename book file to first part file.'

[master c6eed66] Rename book file to first part file.
1 file changed, 0 insertions(+), 0 deletions(-)
rename GitInPractice.asciidoc =>

01-IntroducingGitInPractice.asciidoc (100%)

You’ve renamed GitInPractice.asciidoc to 01-IntroducingGitInPractice.asciidoc and
committed it.

Discussion

Moving and renaming files in version control systems rather than deleting and
re-creating them is done to preserve their history. For example, when a file has been
moved into a new directory, you’ll still be interested in the previous versions of the file
before it was moved. In Git’s case, it will try to auto-detect renames or moves on git

Listing 3.1 Output: renamed commit

mmit
ssage

No insertions/
deletions

Old filename changed
to new filename
www.it-ebooks.info

http://www.it-ebooks.info/

55TECHNIQUE 18 Removing a file: git rm
add or git commit; if a file is deleted and a new file is created, and those files have a
majority of lines in common, Git will automatically detect that the file was moved and
git mv isn’t necessary. Despite this handy feature, it’s good practice to use git mv so
you don’t need to wait for a git add or git commit for Git to be aware of the move
and so you have consistent behavior across different versions of Git (which may have
differing move auto-detection behavior).

 After running git mv, the move or rename will be added to Git’s index staging
area, which, if you remember from technique 2, means the change has been staged
for inclusion in the next commit.

 It’s also possible to rename files or directories and move files or directories into
other directories in the same Git repository using the git mv command and the same
syntax as earlier. If you want to move files into or out of a repository, you must use a
different, non-Git command (such as a Unix mv command), because Git doesn’t han-
dle moving files between different repositories with git mv.

WHAT IF THE NEW FILENAME ALREADY EXISTS? If the filename you move to
already exists, you’ll need to use the git mv -f (or --force) option to request
that Git overwrite whatever file is at the destination. If the destination file
hasn’t already been added or committed to Git, then it won’t be possible to
retrieve the contents if you erroneously asked Git to overwrite it.

Technique 18 Removing a file: git rm
Like moving and renaming files, removing files from version control systems requires
not just performing the filesystem operation as usual, but also notifying Git and com-
mitting the file. In almost any version-controlled project, you’ll at some point want to
remove some files, so it’s essential to know how to do so. Removing version-controlled
files is also safer than removing non-version-controlled files because even after
removal, the files still exist in the history.

 Sometimes tools that don’t interact with Git may remove files for you and require
you to manually indicate to Git that you wish these files to be removed. For testing
purposes, let’s create and commit a temporary file to be removed:

1 Change to the directory containing your repository; for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run echo Git Sandwich > GitInPracticeReviews.tmp. This creates a new file
named GitInPracticeReviews.tmp with the contents “Git Sandwich”.

3 Run git add GitInPracticeReviews.tmp.
4 Run git commit --message 'Add review temporary file.'.

Note that if git add fails, you may have *.tmp in a .gitignore file somewhere (intro-
duced in technique 21). In this case, add it using git add --force GitInPractice-
Reviews.tmp.
www.it-ebooks.info

http://www.it-ebooks.info/

56 CHAPTER 3 Filesystem interactions
Problem

You wish to remove a previously committed file named GitInPracticeReviews.tmp in
your Git working directory and commit the removed file.

Solution

1 Change to the directory containing your repository; for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git rm GitInPracticeReviews.tmp.
3 Run git commit --message 'Remove unfavourable review file.'. The output

should resemble the following.

git rm GitInPracticeReviews.tmp

rm 'GitInPracticeReviews.tmp'

git commit --message 'Remove unfavourable review file.'

[master 06b5eb5] Remove unfavourable review file.
1 file changed, 1 deletion(-)
delete mode 100644 GitInPracticeReviews.tmp

You’ve removed GitInPracticeReviews.tmp and committed it.

Discussion

Git only interacts with the Git repository when you explicitly give it commands, which
is why when you remove a file, Git doesn’t automatically run a git rm command. The
git rm command is indicating to Git not just that you wish for a file to be removed, but
also (like git mv) that this removal should be part of the next commit.

 If you want to see a simulated run of git rm without actually removing the
requested file, you can use git rm -n (or --dry-run). This will print the output of the
command as if it were running normally and indicate success or failure, but without
removing the file.

 To remove a directory and all the unignored files and subdirectories within it, you
need to use git rm -r (where the -r stands for recursive). When run, this deletes the
directory and all unignored files under it. This combines well with --dry-run if you
want to see what would be removed before removing it.

WHAT IF A FILE HAS UNCOMMITTED CHANGES? If a file has uncommitted changes
but you still wish to remove it, you need to use the git rm -f (or --force)
option to indicate to Git that you want to remove it before committing the
changes.

Technique 19 Resetting files to the last commit: git reset
There are times when you’ve made changes to files in the working directory but you
don’t want to commit these changes. Perhaps you added debugging statements to files

Listing 3.2 Output: removed commit

Commit
message

1 line deleted
Deleted filename
www.it-ebooks.info

http://www.it-ebooks.info/

57TECHNIQUE 20 Deleting untracked files: git clean
and have now committed a fix, so you want to reset all the files that haven’t been com-
mitted to their last committed state (on the current branch).

Problem

You wish to reset the state of all the files in your working directory to their last commit-
ted state.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run echo EXTRA >> 01-IntroducingGitInPractice.asciidoc to append
“EXTRA” to the end of 01-IntroducingGitInPractice.asciidoc.

3 Run git reset --hard. The output should resemble the following.

git reset --hard

HEAD is now at 06b5eb5 Remove unfavourable review file.

You’ve reset the Git working directory to the last committed state.

Discussion

The --hard argument signals to git reset that you want it to reset both the index stag-
ing area and the working directory to the state of the previous commit on this branch.
If run without an argument, it defaults to git reset --mixed, which resets the index
staging area but not the contents of the working directory. In short, git reset --mixed
only undoes git add, but git reset --hard undoes git add and all file modifications.

 git reset will be used to perform more operations (including those that alter his-
tory) later, in technique 42.

DANGERS OF USING GIT RESET - -HARD Take care when you use git reset
--hard; it will immediately and without prompting remove all uncommitted
changes to any file in your working directory. This is probably the command
that has caused me more regret than any other; I’ve typed it accidentally and
removed work I hadn’t intended to. Remember that in section 1.1 you
learned that it’s very hard to lose work with Git? If you have uncommitted
work, this is one of the easiest ways to lose it! A safer option may be to use
Git’s stash functionality instead.

Technique 20 Deleting untracked files: git clean
When working in a Git repository, some tools may output undesirable files into your
working directory. Some text editors may use temporary files, operating systems
may write thumbnail cache files, or programs may write crash dumps. Alternatively,
sometimes there may be files that are desirable, but you don’t wish to commit them

Listing 3.3 Output: hard reset

Reset
commit
www.it-ebooks.info

http://www.it-ebooks.info/

58 CHAPTER 3 Filesystem interactions
to your version control system; instead you want to remove them to build clean ver-
sions (although this is generally better handled by ignoring these files, as shown in
technique 21).

 When you wish to remove these files, you could remove them manually. But it’s eas-
ier to ask Git to do so, because it already knows which files in the working directory
are versioned and which are untracked.

 You can view the files that are currently tracked by running git ls-files. This cur-
rently only shows 01-IntroducingGitInPractice.asciidoc, because that is the only file
that has been added to the Git repository. You can run git ls-files --others (or -o)
to show the currently untracked files (there should be none).

 For testing purposes, let’s create a temporary file to be removed:

1 Change to the directory containing your repository; for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run echo Needs more cowbell > GitInPracticeIdeas.tmp. This creates a new
file named GitInPracticeIdeas.tmp with the contents “Needs more cowbell”.

Problem

You wish to remove an untracked file named GitInPracticeIdeas.tmp from a Git work-
ing directory.

Solution

1 Change to the directory containing your repository; for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git clean --force. The output should resemble the following.

git clean --force

Removing GitInPracticeIdeas.tmp

You’ve removed GitInPracticeIdeas.tmp from the Git working directory.

Discussion

git clean requires the --force argument because this command is potentially dan-
gerous; with a single command, you can remove many, many files very quickly.
Remember that in section 1.1, you learned that accidentally losing any file or change
committed to the Git system is nearly impossible. This is the opposite situation; git
clean will happily remove thousands of files very quickly, and they can’t be easily
recovered (unless you backed them up through another mechanism).

 To make git clean a bit safer, you can preview what will be removed before doing
so by using git clean -n (or --dry-run). This behaves like git rm --dry-run in that it
prints the output of the removals that would be performed but doesn’t actually do so.

Listing 3.4 Output: force-cleaned files

Removed
file
www.it-ebooks.info

http://www.it-ebooks.info/

59TECHNIQUE 21 Ignoring files: .gitignore
 To remove untracked directories as well as untracked files, you can use the -d
(“directory”) parameter.

Technique 21 Ignoring files: .gitignore
As discussed in technique 20, sometimes working directories contain files that are
untracked by Git, and you don’t want to add them to the repository. Sometimes these
files are one-off occurrences; you accidentally copy a file to the wrong directory and
want to delete it. More often, they’re the product of software (such as the software
stored in the version control system or some part of your operating system) putting
files into the working directory of your version control system.

 You could git clean these files each time, but that would rapidly become tedious.
Instead, you can tell Git to ignore them so it never complains about these files being
untracked and you don’t accidentally add them to commits.

Problem

You wish to ignore all files with the extension .tmp in a Git repository.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run echo *.tmp > .gitignore. This creates a new file named .gitignore with
the contents “*.tmp”.

3 Run git add .gitignore to add .gitignore to the index staging area for the next
commit. There will be no output.

4 Run git commit --message='Ignore .tmp files.'. The output should resem-
ble the following.

git commit --message='Ignore .tmp files.'

[master 0b4087c] Ignore .tmp files.
1 file changed, 1 insertion(+)
create mode 100644 .gitignore

You’ve added a .gitignore file with instructions to ignore all .tmp files in the Git work-
ing directory.

Discussion

Each line of a .gitignore file matches files with a pattern. For example, you can add
comments by starting a line with a # character or negate patterns by starting a line
with a ! character. Read more about the pattern syntax in git help gitignore.

Listing 3.5 Output: ignore file commit

Commit
message

1 line deleted
Created filename
www.it-ebooks.info

http://www.it-ebooks.info/

60 CHAPTER 3 Filesystem interactions
 A good and widely held principle for version control systems is to avoid commit-
ting output files to a version control repository. Output files are those that are created
from input files that are stored in the version control repository.

 For example, you may have a hello.c file that is compiled into a hello.o object file.
The hello.c input file should be committed to the version control system, but the
hello.o output file should not.

 Committing .gitignore to the Git repository makes it easy to build up lists of
expected output files so they can be shared between all the users of a repository and
not accidentally committed. GitHub also provides a useful collection of gitignore files
at https://github.com/github/gitignore.

 Let’s try to add an ignored file:

1 Change to the directory containing your repository; for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run touch GitInPracticeGoodIdeas.tmp. This creates a new, empty file
named GitInPracticeGoodIdeas.tmp.

3 Run git add GitInPracticeGoodIdeas.tmp. The output should resemble the
following.

git add GitInPracticeGoodIdeas.tmp

The following paths are ignored by one of your .gitignore files:
GitInPracticeGoodIdeas.tmp
Use -f if you really want to add them.
fatal: no files added

B GitInPracticeGoodIdeas.tmp wasn’t added, because its addition would contradict
your .gitignore rules.

C was printed, because no files were added.

This interaction between .gitignore and git add is particularly useful when adding
subdirectories of files and directories that may contain files that should to be ignored.
git add won’t add these files but will still successfully add all others that shouldn’t be
ignored.

Technique 22 Deleting ignored files
When files have been successfully ignored by the addition of a .gitignore file, you’ll
sometimes want to delete them all. For example, you may have a project in a Git
repository that compiles input files (such as .c files) into output files (in this example,
.o files) and wish to remove all these output files from the working directory to per-
form a new build from scratch.

 Let’s create some temporary files that can be removed:

Listing 3.6 Output: trying to add an ignored file

Ignored fileB

Error messageC
www.it-ebooks.info

https://github.com/github/gitignore
http://www.it-ebooks.info/

61TECHNIQUE 23 Temporarily stashing some changes: git stash
1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run touch GitInPracticeFunnyJokes.tmp GitInPracticeWittyBanter.tmp.

Problem

You wish to delete all ignored files from a Git working directory.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git clean --force -X. The output should resemble the following.

git clean --force -X

Removing GitInPracticeFunnyJokes.tmp
Removing GitInPracticeWittyBanter.tmp

You’ve removed all ignored files from the Git working directory.

Discussion

The -X argument specifies that git clean should remove only ignored files from the
working directory. If you wish to remove ignored files and all the untracked files (as
git clean --force would do), you can instead use git clean -x (note that the -x is
lowercase rather than uppercase).

 The specified arguments can be combined with the others discussed in
technique 20. For example, git clean -xdf removes all untracked or ignored files
(-x) and directories (-d) from a working directory. This removes all files and directo-
ries for a Git repository that weren’t previously committed. Take care when running
this; there will be no prompt, and all the files will be quickly deleted.

 Often git clean -xdf is run after git reset --hard; this means you’ll have to reset
all files to their last-committed state and remove all uncommitted files. This gets you a
clean working directory: no added files or changes to any of those files.

Technique 23 Temporarily stashing some changes: git stash
There are times when you may find yourself working on a new commit and want to
temporarily undo your current changes but redo them at a later point. Perhaps there
was an urgent issue that means you need to quickly write some code and commit a fix.
In this case, you could make a temporary branch and merge it in later, but this would
add a commit to the history that may not be necessary. Instead you can stash your
uncommitted changes to store them temporarily and then be able to change
branches, pull changes, and so on without needing to worry about these changes get-
ting in the way.

Listing 3.7 Output: force-cleaning ignored files

Removed file
www.it-ebooks.info

http://www.it-ebooks.info/

62 CHAPTER 3 Filesystem interactions
Problem

You wish to stash all your uncommitted changes for later retrieval.

Solution

1 Change to the directory containing your repository; for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run echo EXTRA >> 01-IntroducingGitInPractice.asciidoc.
3 Run git stash save. The output should resemble the following.

git stash save

Saved working directory and index state WIP on master:
36640a5 Ignore .tmp files.
HEAD is now at 36640a5 Ignore .tmp files.

You’ve stashed your uncommitted changes.

Discussion

git stash save creates a temporary commit with a prepopulated commit message and
then returns your current branch to the state before the temporary commit was made.
It’s possible to access this commit directly, but you should only do so through git
stash to avoid confusion.

 You can see all the stashes that have been made by running git stash list. The
output will resemble the following.

stash@{0}: WIP on master: 36640a5 Ignore .tmp files.

This shows the single stash that you made. You can access it using ref stash@{0}; for
example, git diff stash@{0} will show you the difference between the working direc-
tory and the contents of that stash.

 If you save another stash, it will become stash@{0} and the previous stash will
become stash@{1}. This is because the stashes are stored on a stack structure. A stack
structure is best thought of as being like a stack of plates. You add new plates on the
top of the existing plates; and if you remove a single plate, you take it from the top.
Similarly, when you run git stash, the new stash is added to the top (it becomes
stash@{0}) and the previous stash is no longer at the top (it becomes stash@{1}).

DO YOU NEED TO USE GIT ADD BEFORE GIT STASH? No, git add is not needed.
git stash stashes your changes regardless of whether they’ve been added to
the index staging area by git add.

DOES GIT STASH WORK WITHOUT THE SAVE ARGUMENT? If git stash is run with
no save argument, it performs the same operation; the save argument isn’t

Listing 3.8 Output: stashing uncommitted changes

Listing 3.9 List of stashes

Current commit

Stashed commit
www.it-ebooks.info

http://www.it-ebooks.info/

63TECHNIQUE 24 Reapplying stashed changes: git stash pop

St
co
needed. I’ve used it in the examples because it’s more explicit and easier to
remember.

Technique 24 Reapplying stashed changes: git stash pop
When you’ve stashed your temporary changes and performed whatever operations
required a clean working directory (perhaps you fixed and committed the urgent
issue), you’ll want to reapply the changes (because otherwise you could’ve just run
git reset --hard). When you’ve checked out the correct branch again (which may
differ from the original branch), you can request that the changes be taken from the
stash and applied onto the working directory.

Problem

You wish to pop the changes from the last git stash save into the current working
directory.

Solution

1 Change to the directory containing your repository; for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git stash pop. The output should resemble the following.

git stash pop

On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working
directory)
#
modified: 01-IntroducingGitInPractice.asciidoc
#
no changes added to commit (use "git add" and/or "git commit -a")
Dropped refs/stash@{0} (f7e39e2590067510be1a540b073e74704395e881)

You’ve reapplied the changes from the last git stash save.

Discussion

When running git stash pop, the top stash on the stack (stash@{0}) is applied to the
working directory and removed from the stack. If there’s a second stash in the stack
(stash@{1}), it’s now at the top (it becomes stash@{0}). This means if you run git
stash pop multiple times, it will keep working down the stack until no more stashes
are found, at which point it will output No stash found.

 If you wish to apply an item from the stack multiple times (perhaps on multiple
branches), you can instead use git stash apply. This applies the stash to the working
tree as git stash pop does but keeps the top stack stash on the stack so it can be run
again to reapply.

Listing 3.10 Output: reapplying stashed changes

Current branch output

Begin status output

End
status
outputashed

mmit
www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 3 Filesystem interactions
Technique 25 Clearing stashed changes: git stash clear
You may have stashed changes with the intent of popping them later, but then realize
that you no longer wish to do so—the changes in the stack are now unnecessary, so
you want to get rid of them all. You could do this by popping each change off the stack
and then deleting it, but it would be handy to have a command that allows you to do
this in a single step. Thankfully, git stash clear does just this.

Problem

You wish to clear all previously stashed changes.

Solution

1 Change to the directory containing your repository; for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git stash clear. There will be no output.

You’ve cleared all the previously stashed changes.

Discussion

Clearing the stash is done without a prompt and removes every previous item from
the stash, so be careful when doing so. Cleared stashes can’t be easily recovered. For
this reason, once you learn about history rewriting in technique 42, I’d recommend
making commits and rewriting them later rather than relying too much on git stash.

Technique 26 Assuming files are unchanged
Sometimes you may wish to make changes to files but have Git ignore the specific
changes you’ve made so that operations such as git stash and git diff ignore these
changes. In these cases, you could ignore them yourself or stash them elsewhere, but
it would be ideal to be able to tell Git to ignore these particular changes.

 I’ve found myself in a situation in the past where I wanted to test a Rails configura-
tion file change for a week or two while continuing to do my normal work. I didn’t
want to commit it because I didn’t want it to apply to servers or my coworkers, but I
did want to continue testing it while I made other commits rather than change to a
particular branch each time.

Problem

You wish for Git to assume there have been no changes made to 01-IntroducingGitIn-
Practice.asciidoc.

Solution

1 Change to the directory containing your repository; for example,
cd /Users/mike/GitInPracticeRedux/.
www.it-ebooks.info

http://www.it-ebooks.info/

65TECHNIQUE 27 Listing assumed-unchanged files
2 Run git update-index --assume-unchanged 01-IntroducingGitInPractice
.asciidoc. There will be no output.

Git will ignore any changes made to 01-IntroducingGitInPractice.asciidoc.

Discussion

When you run git update-index --assume-unchanged, Git sets a special flag on the
file to indicate that it shouldn’t be checked for any changes. This can be useful to tem-
porarily ignore changes made to a particular file when looking at git status or git
diff, but also to tell Git to avoid checking a file that is particularly huge and/or slow
to read. This isn’t generally a problem on normal filesystems on which Git can quickly
query whether a file has been modified by checking the File Modified timestamp
(rather than having to read the entire file and compare it).

 git update-index --assume-unchanged takes only files as arguments, rather than
directories. If you assume multiple files are unchanged, you need to specify them as
multiple arguments; for example, git update-index --assume-unchanged 00-Preface
.asciidoc 01-IntroducingGitInPractice.asciidoc.

 The git update-index command has other complex options, but we’ll only cover
those around the “assume” logic. The rest of the behavior is better accessed through
the git add command; it’s a higher-level and more user-friendly way of modifying the
state of the index.

Technique 27 Listing assumed-unchanged files
When you’ve told Git to assume no changes were made to particular files, it can be
hard to remember which files were updated. In this case, you may end up modifying a
file and wondering why Git doesn’t seem to want to show you the changes. Addition-
ally, you could forget that you made the changes and be confused as to why the state
in your text editor doesn’t seem to match the state that Git is seeing.

Problem

You wish for Git to list all the files that it has been told to assume haven’t changed.

Solution

1 Change to the directory containing your repository; for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git ls-files -v. The output should resemble the following.

git ls-files -v

H .gitignore
h 01-IntroducingGitInPractice.asciidoc

Listing 3.11 Output: listing assumed-unchanged files

Committed fileB

Assumed-unchanged fileC
www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 3 Filesystem interactions
B shows that committed files are indicated by an uppercase H at the beginning of the
line.

C shows that an assumed-unchanged file is indicated by a lowercase h tag.

Discussion

Like git update-index, git ls-files -v is a low-level command that you’ll typically
not run often. git ls-files without any arguments lists the files in the current direc-
tory that Git knows about, but the -v argument means it’s followed by tags that indi-
cate file state.

 Rather than reading through the output for this command, you can instead run
git ls-files -v | grep '^[hsmrck?]' | cut -c 3-. This uses Unix pipes, where the
output of each command is passed into the next and modified.

 grep '^[hsmrck?]' filters the output filenames to show only those that begin with
any of the lowercase hsmrck? characters (the valid prefixes output by git ls-files).
It’s not important to understand the meanings of any prefixes other than H and h, but
you can read more about them by running git ls-files --help.

 cut -c 3- filters the first two characters of each of the output lines: h followed by a
space, in the example.

 With these combined, the output should resemble the following.

git ls-files -v | grep '^[hsmrck?]' | cut -c 3-

01-IntroducingGitInPractice.asciidoc

HOW DO PIPES, GREP, AND CUT WORK? Don’t worry if you don’t understand
quite how Unix pipes, grep, and cut work; this book is about Git rather than
shell scripting, after all! Feel free to use the command as is, as a quick way of
listing files that are assumed to be unchanged. To learn more about these, I
recommend the Wikipedia page on Unix filters: http://en.wikipedia.org/
wiki/Filter_(Unix).

Technique 28 Stopping assuming files are unchanged
Usually, telling Git to assume there have been no changes made to a particular file is a
temporary option; if you have to keep files changed in the long term, they should
probably be committed. At some point, you’ll want to tell Git to once again monitor
any changes made to these files.

 With the example I gave previously in technique 26, eventually the Rails configura-
tion file change I had been testing was deemed to be successful enough that I wanted
to commit it so my coworkers and the servers could use it. If I merely used git add to
make a new commit, then the change wouldn’t show up, so I had to make Git stop
ignoring this particular change before I could make a new commit.

Listing 3.12 Output: assumed-unchanged files

Assumed-unchanged file
www.it-ebooks.info

http://en.wikipedia.org/wiki/Filter_(Unix)
http://en.wikipedia.org/wiki/Filter_(Unix)
http://www.it-ebooks.info/

67 Summary
Problem

You wish for Git to stop assuming there have been no changes made to 01-Introducing-
GitInPractice.asciidoc.

Solution

1 Change to the directory containing your repository; for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git update-index --no-assume-unchanged 01-IntroducingGitIn-
Practice.asciidoc. There will be no output.

You can verify that Git has stopped assuming there were no changes made to 01-
IntroducingGitInPractice.asciidoc by running git ls-files -v | grep 01-Introducing-
GitInPractice.asciidoc. The output should resemble the following.

git ls-files -v | grep 01-IntroducingGitInPractice.asciidoc

H 01-IntroducingGitInPractice.asciidoc

Git will notice any current or future changes made to 01-IntroducingGitInPractice
.asciidoc.

Discussion

Once you tell Git to stop ignoring changes made to a particular file, all commands
such as git add and git diff will start behaving normally on this file again.

3.1 Summary
In this chapter, you learned the following:

 How to use git mv to move or rename files
 How to use git rm to remove files or directories
 How to use git clean to remove untracked or ignored files or directories
 How and why to create a .gitignore file
 How to (carefully) use git reset --hard to reset the working directory to the

previously committed state
 How to use git stash to temporarily store and retrieve changes
 How to use git update-index to tell Git to assume files are unchanged

Listing 3.13 --no-assume-unchanged output
www.it-ebooks.info

http://www.it-ebooks.info/

History visualization
In this chapter, you’ll learn about visualizing the history of a Git repository in vary-
ing formats. When working with a Git repository on large, long-running software
projects, you’ll sometimes want to dig through the history to identify old versions of
code, work out why and by whom changes were made, or analyze the changes to
identify why a bug is occurring. You can do this to a limited extent using the com-
mands you’ve already learned (git log and git diff) and extend this with two
more we’ll cover in this chapter: git blame and git bisect.

 Let’s start by learning how to optimize your use of git log to list only particular
commits.

This chapter covers
 Filtering git log output commits

 Formatting git log output to display the
information you care about

 Finding why and when a line in a file was
changed, and by whom, using git blame

 Identifying which commit caused a particular
bug using git bisect
68

www.it-ebooks.info

http://www.it-ebooks.info/

69TECHNIQUE 29 Listing only certain commits
Technique 29 Listing only certain commits
Sometimes, when examining history, you’ll want to filter the commits that are dis-
played based on some of their metadata. Perhaps you’re tracking down a commit that
you can remember was made on a rough date, by a particular person, or with a partic-
ular word in its commit message. You could do this manually, but sometimes there are
too many commits in the history to scan through the git log or gitx output in a
timely fashion. For these cases, the git log command has various flags and arguments
that you can use to filter which commits are shown in its output.

 Let’s start by trying to find a commit by author, date, and commit message
simultaneously.

Problem

You want to list the commits authored by Mike McQuaid after November 10, 2013,
with the string “file.” in their message.

Solution

1 Change to the directory containing your repository; for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git log --author "Mike McQuaid" --after "Nov 10 2013" --grep
'file\.' and, if necessary, q to exit. The output should resemble the following.

git log --author "Mike McQuaid" --after "Nov 10 2013" --grep 'file\.'

commit 06b5eb58b62ba8bbbeee258705c636ca7ac20b49
Author: Mike McQuaid <mike@mikemcquaid.com>
Date: Thu Nov 28 15:49:30 2013 +0000

Remove unfavourable review file.

commit fcd8f6e957a03061cdf411851fe38034a44c97ab
Author: Mike McQuaid <mike@mikemcquaid.com>
Date: Thu Nov 28 15:48:24 2013 +0000

Add first review temporary file.

commit c6eed6681efc8d0bff908e6dbb7d887c4b3fab3e
Author: Mike McQuaid <mike@mikemcquaid.com>
Date: Thu Nov 28 15:39:38 2013 +0000

Rename book file to first part file.

The filtered log output is essentially the same as the git log output you saw in tech-
nique 4, but with only the commits that are matched by the specified arguments.

 The arguments provided to the log command indicate the following:

 --author specifies a regular expression that matches the contents of the
author. In the previous case, it was searching for the author string Mike

Listing 4.1 Output: filtered log

Most recent
commit

Least recent
commit
www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 4 History visualization
McQuaid <mike@mikemcquaid.com> and found a match because the string
started with the requested Mike McQuaid.

 --after (or --since) specifies that the only commits shown should be those
that were made after the specified date. These dates can be in any format that
Git recognizes, such as Nov 10 2013, 2014-01-30, midnight, or yesterday.

 --grep specifies a regular expression that matches the contents of the commit
message. file\. was used rather than file. to escape the . character.

WHAT ARE REGULAR EXPRESSIONS? Regular expressions are search patterns
that are typically used to match patterns inside strings. There are multiple
variants of regular expressions, and Git uses the POSIX regular expression for-
mat. Git uses them for various filtering operations such as filtering by commit
message or author, as you saw previously. Characters can have literal mean-
ings, such as a, which will always match a lowercase a character; or they can
have special meanings, such as ., which will match any character. For exam-
ple, file. will match the string files or filed. To turn a character with a special
meaning into one with a literal meaning, you can escape it with a backslash:
file\. will match the string file. but not the string files. I’m not going to cover
regular expressions in detail because they’re beyond the scope of this book.
Don’t worry if you don’t fully understand them; what you’ve seen here
should be more than enough to work with Git. If you wish to learn more
about them, I recommend the Wikipedia page http://en.wikipedia.org/
wiki/Regular_expression.

You’ve shown a subset of commits filtered by author, date, and commit message.

Discussion

git log can take the following arguments:

 A --max-count (or -n) argument to limit the number of commits shown in the
log output. I tend to use this often when I only care about something in, say, the
last 10 commits and don’t want to scroll through more output than that.

 A --reverse argument to show the commits in ascending chronological order
(oldest commit first).

 A --before (or --until) argument, which will only show commits before the
given date. This is the reverse of --after.

 A --merges flag (or --min-parents=2), which will only show merge commits—
commits that have at least two parents. If you adopt a branch-heavy workflow with
Git, this will be useful in identifying which branches were merged and when.

4.1 git show
git show is a command similar to git log, but it shows a single commit. It also
defaults to showing what was changed in that commit. Remember from technique 4
that git log has a --patch (or -p) argument to show what was changed by each com-
mit in its output.
www.it-ebooks.info

http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression
http://www.it-ebooks.info/

71TECHNIQUE 30 Listing commits with different formatting

git show HEAD^

commit 06b5eb58b62ba8bbbeee258705c636ca7ac20b49
Author: Mike McQuaid <mike@mikemcquaid.com>
Date: Thu Nov 28 15:49:30 2013 +0000

Remove unfavourable review file.

diff --git a/GitInPracticeReviews.tmp b/GitInPracticeReviews.tmp
deleted file mode 100644
index ebb69c3..0000000
--- a/GitInPracticeReviews.tmp
+++ /dev/null
@@ -1 +0,0 @@
-Git Sandwich

B shows all the same information expected in git log output, but it only ever shows
a single commit.

C shows the changes made in that commit. It’s the equivalent of typing git diff
HEAD^^..HEAD^—the difference between the previous commit and the one before it.

The git show HEAD^ output is equivalent to git log --max-count=1 --patch HEAD^.

Technique 30 Listing commits with different formatting
The default git log output format is helpful, but it takes a minimum of six lines of
output to display each commit. It displays the commit SHA-1, author name and email,
commit date, and the full commit message (each additional line of which adds a line
to the git log output). Sometimes you’ll want to display more information, and some-
times you’ll want to display less. You may even have a personal preference about how
the output is presented that doesn’t match how it currently is.

 Fortunately, git log has some powerful formatting features with varied, sensible
supplied options that give you the ability to completely customize the output to meet
your needs.

WHY ARE COMMITS STRUCTURED LIKE EMAILS? Remember in technique 4 I
mentioned that commits are structured like emails? This is because Git was
initially created for use by the Linux kernel project, which has a high-traffic
mailing list. People frequently send commits (known as patches) to the mail-
ing list. Previously there was an implicit format that people used to turn a
requested change into an email for the mailing list, but Git can convert com-
mits to and from an email format to facilitate this. Commands such as git
format-patch, git send-mail, and git am (an abbreviation for “apply mail-
box”) can work directly with email files to convert them to/from Git commits.
This is particularly useful for open source projects where everyone can access
the Git repository but fewer people have write access to it. In this case, some-
one could send me an email that contains all the metadata of a commit using
one of these commands. Nowadays, typically this is done with a GitHub pull
request instead (which we’ll cover in chapter 11).

Listing 4.2 Output: showing a commit

Commit
informationB

CCommit diff
www.it-ebooks.info

http://www.it-ebooks.info/

72 CHAPTER 4 History visualization

Com
au

Com
Let’s display some commits in an email-style format.

Problem

You want to list the last two commits in an email format with the oldest displayed first.

Solution

1 Change to the directory containing your repository; for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git log --format=email --reverse --max-count 2' and, if necessary, q to
exit. The output should resemble the following.

git log --format=email --reverse --max-count 2

From 06b5eb58b62ba8bbbeee258705c636ca7ac20b49 Mon Sep 17 00:00:00 2001
From: Mike McQuaid <mike@mikemcquaid.com>
Date: Thu, 28 Nov 2013 15:49:30 +0000
Subject: [PATCH] Remove unfavourable review file.

From 36640a59af951a26e0793f8eb0f4cc8e4c030167 Mon Sep 17 00:00:00 2001
From: Mike McQuaid <mike@mikemcquaid.com>
Date: Thu, 28 Nov 2013 15:57:43 +0000
Subject: [PATCH] Ignore .tmp files.

B can be safely ignored. The first part is the SHA-1 hash for the commit. The log out-
put is generated in the Unix mbox (short for mailbox) format. The second, date
part is not affected by the commit date or contents but is a special value used to
indicate that this was outputted from Git rather than taken from the real Unix
mbox.

C is the author of the commit. This is one of the reasons Git stores a name and an
email address for authors and in commits; it eases the transition to email format. A
commit can be seen as an email sent by the author of the commit requesting that a
change be made.

D is the date on which the commit was made. This also sets the date for the email in
its headers.

E is the first line of the commit message prefixed with [PATCH]. This is another rea-
son to structure your commit messages like emails (as mentioned in technique 4).

If there’s more than one line in a commit message, the other lines are shown as the
message body. Remember, if you use the --patch (or -p) argument, then the git log
output will also include the changes made in the commit. With this argument
provided, each outputted git log entry will contain the commit and all the metadata
necessary to convert it to or from an email.

Listing 4.3 Output: email-formatted log

BUnix mailbox date
mit

thor
C

mit
date D Commit subjectE
www.it-ebooks.info

http://www.it-ebooks.info/

73TECHNIQUE 30 Listing commits with different formatting
Discussion

If you specify the --patch (or -p) flag to git log, you can also format the diff output
by specifying flags for git diff. Recall the discussion of word diffs in section 1.7. git
log --patch --word-diff shows the word diff (rather than the unified diff) for each
log entry.

 git log can take a --date flag, which takes various parameters to display the out-
put dates in different formats. For example, --date=relative displays all dates rela-
tive to the current date; 6 weeks ago and --date-short display only the date, such as
2013-11-28. iso (or iso8601), rfc (or rfc2822), raw, local, and default formats are
also available, but I won’t detail them in this book.

 The --format (or --pretty) flag can take various parameters, such as email,
which you’ve seen in this example; medium, which is the default if no format was speci-
fied; and oneline, short, full, fuller, and raw. I won’t show every format in this
book, but please compare and contrast them on your local machine. Different formats
are better used in different situations depending on how much of their displayed
information you care about at that time.

 You may have noticed that the full output contains details about an author and a
committer, and the fuller output additionally contains details of the author date and
commit date.

git log --format=fuller

commit 334181a038e812050051776b69f0a80187abbeed
Author: BrewTestBot <brew-test-bot@googlegroups.com>
AuthorDate: Thu Jan 9 23:48:16 2014 +0000
Commit: Mike McQuaid <mike@mikemcquaid.com>
CommitDate: Fri Jan 10 08:19:50 2014 +0000

rust: add 0.9 bottle.

...

This snippet shows a single commit from Homebrew, an open-source project accessi-
ble at https://github.com/Homebrew/homebrew. This was used because in the Git-
InPracticeRedux repository, all the previous commits will have the same author and
committer, author date, and commit date.

WHY DO COMMITS HAVE AN AUTHOR AND A COMMITTER? The fuller commit out-
put shows that for a commit, there are two recorded actions: the original
author of the commit and the committer (the person who added this commit
to the repository). These two attributes are both set at git commit time. If
they’re both set at once, then why are they separate values? Remember,
you’ve seen repeatedly that commits are like emails and can be formatted as
emails and sent to others. If I have a public repository on GitHub, other users
can clone my repository but can’t commit to it.

Listing 4.4 Fuller log snippet
www.it-ebooks.info

https://github.com/Homebrew/homebrew
http://www.it-ebooks.info/

74 CHAPTER 4 History visualization
In these cases they may send me commits through a pull request (discussed
later in section 10.1) or by email. If I want to include these in my repository,
the separation between committing and authoring means I can then include
these commits, and Git stores the person who, for example, made the code
changes and the person who added these changes to the repository (hope-
fully after reviewing them). This means you can keep the original attribution
for the person who did the work but still record the person who added the
commit to the repository and (hopefully) reviewed it. This is particularly use-
ful in open source software; with other tools, such as Subversion, if you don’t
have commit access to a repository, the best attribution you could hope for
would be something like “Thanks to Mike McQuaid for this commit!” in the
commit message.

In Subversion the equivalent git blame command is svn blame. It also
has an alias called svn praise. In Git there’s no such alias by default (but
technique 50 will later show you how to create one yourself). I’m sure there’s
a joke to be made about the fact that Subversion offers praise and blame
equally but Git offers only blame!

4.2 Custom output format
If none of the git log output formats meets your needs, you can create your own cus-
tom format using a format string. The format string uses placeholders to fill in various
attributes per commit.

 Let’s create a more prose-like format for git log.

git log --format="%ar %an did: %s"

6 weeks ago Mike McQuaid did: Ignore .tmp files.
6 weeks ago Mike McQuaid did: Remove unfavourable review file.
6 weeks ago Mike McQuaid did: Add first review temporary file.
6 weeks ago Mike McQuaid did: Rename book file to first part file.
9 weeks ago Mike McQuaid did: Start Chapter 2.
3 months ago Mike McQuaid did: Joke rejected by editor!
3 months ago Mike McQuaid did: Improve joke comic timing.
3 months ago Mike McQuaid did: Add opening joke. Funny?
3 months ago Mike McQuaid did: Initial commit of book.

Here I’ve specified the format string with %ar %an did: %s. In this format string

 %ar is the relative format date on which the commit was authored.
 %an is the name of the author of the commit.
 did: is text that’s displayed the same in every commit and isn’t a placeholder.
 %s is the commit message subject (the first line).

You can see the complete list of these placeholders in git log --help. There are too
many for me to detail them all in this book. The large number of placeholders should
mean you can customize git log output into almost any format.

Listing 4.5 Custom prose log format
www.it-ebooks.info

http://www.it-ebooks.info/

75 The ultimate log output
4.3 Releasing logs: git shortlog
git shortlog shows the output of git log in a format that’s typically used for open
source software-release announcements. It displays commits grouped by author with
one commit subject per line.

git shortlog HEAD~6..HEAD

Mike McQuaid (9):
Joke rejected by editor!
Start Chapter 2.
Rename book file to first part file.
Add first review temporary file.
Remove unfavourable review file.
Ignore .tmp files.

B shows the name of the author of the following commits and how many commits
they’ve made.

C shows the first line of the commit message.

The commit range (HEAD~6..HEAD) is optional, but typically you’d want to use one to
create a software-release announcement for any version after the first.

4.4 The ultimate log output
As mentioned previously, often the git log output is too verbose or doesn’t display all
the information you wish to query in a compact format. It’s also not obvious from the
output how local or remote branches relate to the output.

 I have a selection of format options I refer to as my “ultimate log output.” Let’s
look at the output with these options.

git log --oneline --graph --decorate

* 36640a5 (HEAD, origin/master, origin/HEAD, master) Ignore .tmp files.
* 06b5eb5 Remove unfavourable review file.
* fcd8f6e Add first review temporary file.
* c6eed66 Rename book file to first part file.
* ac14a50 Start Chapter 2.
* 07fc4c3 Joke rejected by editor!
* 85a5db1 Improve joke comic timing.
* 6b437c7 Add opening joke. Funny?
* 6576b68 Initial commit of book.

This output format displays each commit on a single line. The line begins with a
branch graph indicator (which I’ll explain shortly) followed by the short SHA-1

Listing 4.6 Output: short log

Listing 4.7 Output: graph log

Commit authorB

Commit messageC
www.it-ebooks.info

http://www.it-ebooks.info/

76 CHAPTER 4 History visualization
(which is useful for quickly copying and past-
ing), the branches, tags (introduced in tech-
nique 36), and HEAD (which points to this
commit in parentheses), and ends with the
commit subject.

 As you may have noticed, this format is
similar to that of the first two columns of GitX
(see figure 4.1). The GitInPracticeRedux
repository doesn’t currently have any merge
commits. Let’s see what the graph log output
looks like with some of them.

git log --oneline --graph --decorate

* 129cce6 (origin/master, origin/HEAD, master) Merge branch 'testing'
|\
| * a86067a (origin/testing, testing) testing branch commit
* | 1a36bd6 master branch commit

...

Here you can see the branch graph indicator becoming more useful. Like the graphi-
cal tools you saw in technique 4, this displays branch merges and the commits on dif-
ferent branches, using ASCII symbols to draw lines. The * means a commit that was
made. Each line follows a single branch. Reading from the bottom up, you can see
from the preceding listing that a commit was made on the master branch, a commit
was made on the testing branch, and then the testing branch was merged into
master. Both the testing and master branches remain (haven’t been deleted), and
both have been pushed to their respective remote branches. All this from just three
lines of ASCII output. Hopefully you can see why I love this presentation. Typing git
log --oneline --graph --decorate is unwieldy, so you’ll see later in technique 50 how
to shorten this to something like git l by using an alias.

Technique 31 Showing who last changed each line of a file: git blame
I’m sure all developers have been in a situation where they’ve seen some line of code
in a file and wondered why it is was written that way. As long as the file is stored in a
Git repository, it’s easy to query who made a change as well as when and why (given a
good commit message was used) a certain change was made.

 You could do this by using git diff or git log --patch, but neither of these tools
is optimized for this particular use case; they both usually require reading through a
lot of information you aren’t interested in to find the information you want. Instead,
let’s see how to use a command designed specifically for this use case: git blame.

Listing 4.8 Graph log merge commit snippet

Figure 4.1 GitX graph output
www.it-ebooks.info

http://www.it-ebooks.info/

77TECHNIQUE 31 Showing who last changed each line of a file: git blame
Problem

You wish to show the commit, person, and date on which each line of GitInPractice
.asciidoc was changed.

Solution

1 Change to the directory containing your repository; for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git blame --date=short 01-IntroducingGitInPractice.asciidoc. The
output should resemble the following.

git blame --date=short 01-IntroducingGitInPractice.asciidoc

^6576b68 GitInPractice.asciidoc (Mike McQuaid 2013-09-29 1)
= Git In Practice

6b437c77 GitInPractice.asciidoc (Mike McQuaid 2013-09-29 2)
== Chapter 1

07fc4c3c GitInPractice.asciidoc (Mike McQuaid 2013-10-11 3)
// TODO: think of funny first line that editor will approve.

ac14a504 GitInPractice.asciidoc (Mike McQuaid 2013-11-09 4)
== Chapter 2

ac14a504 GitInPractice.asciidoc (Mike McQuaid 2013-11-09 5)
// TODO: write two chapters

First, note that the output shows GitInPractice.asciidoc rather than 01-Introducing-
GitInPractice.asciidoc. This is because the filename has been changed since these
changes were made. git blame is only showing changes to lines in the file and ignor-
ing that the file was renamed. This is useful, because it means you don’t lose all blame
data whenever you rename a file.

 The blame output shows the following:

 --date=short is used to display only the date (not the time). This accepts the
same formats as the --date flag for git log. It was used in the preceding listing
to make it more readable, because git blame lines tend to be very long.

 The ^ (caret) prefix on the first line indicates that this line was inserted in the
initial commit.

 Each line contains the short SHA-1, filename (if the line was changed when the
file had a different name), parenthesized name, date, line number, and line
contents. For example, in commit 6b437c77 on September 29, 2013, Mike
McQuaid added the == Chapter 1 line to GitInPractice.asciidoc (although the
file is now named 01-IntroducingGitInPractice.asciidoc).

You’ve shown who changed each line of a file, in which commit, and when the commit
was made.

Listing 4.9 Blame output
www.it-ebooks.info

http://www.it-ebooks.info/

78 CHAPTER 4 History visualization
Discussion

git blame has a --show-email (or -e) flag that can show the email address of the
author instead of the name.

 You can use the -w flag to ignore whitespace changes when finding where the line
changes came from. Sometimes people fix stuff like indentation or whitespace on a
line, which makes no functional difference to the code in most programming lan-
guages. In these cases, you want to ignore whitespace changes so you can look at the
changes that affect program behavior.

 The -s flag hides the author name and date in the output (and takes precedence
over --show-email/-e). This can be useful for displaying a more concise output for-
mat and looking up this information by passing the SHA-1 to git show at a later point.

 If the -L flag is specified and followed with a line range—for example, -L 40,60—
then only the lines in that range are shown. This can be useful if you know already
what subset of the file you care about and don’t want to have to search through it
again in the git blame output.

Technique 32 Finding which commit caused a particular
bug: git bisect

The only thing worse than finding a bug in software and having to fix it is having to fix
the same bug multiple times. A bug that was found, fixed, and has appeared again is
typically known as a regression.

 The traditional workflow for finding regressions is fairly painful. You typically keep
checking out older and older revisions in the version control history until you find a
commit in which the bug wasn’t present, check out newer and newer revisions until
you find where it happens again, and repeat the process to narrow it down. It’s a
tedious exercise, which is made worse by your having to fix the same problem again.

 Fortunately, Git has a useful tool that makes this process much easier for you: git
bisect. It uses a binary search algorithm to identify the problematic commit as
quickly as possible; it effectively automates the process of searching backward and for-
ward through history that I explained earlier.

 The git bisect command takes good and bad arguments that you use to tell it that
a particular commit didn’t have the bug (good) or did have the bug (bad). It assumes
that the bug disappears and reappears multiple times but occurred once, so it can
make the assumption that the commit that caused a particular bug is the first one
chronologically that contains that bug. It uses this assumption, records the good and
bad commits, and uses this information to narrow down the commits each time. For
example, if it was bisecting between commits from Monday (good) to Friday (bad),
then if a commit on Wednesday was known to be good, it could narrow the search to
Monday, Tuesday, or Wednesday. This halving of the search space each time is known
as a binary search because it makes a binary decision each time: was the bad commit
before or after this one?
www.it-ebooks.info

http://www.it-ebooks.info/

79TECHNIQUE 32 Finding which commit caused a particular bug: git bisect

it
 For a simple example, let’s try to find out which commit renamed a particular file
(without manually looking through the history).

Problem

You wish to locate the commit that renamed GitInPractice.asciidoc to 01-Introducing-
GitInPractice.asciidoc.

Solution

1 Change to the directory containing your repository; for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git bisect start. There will be no output.
3 Run git bisect bad. There will be no output.
4 Run git bisect good 6576b6, where 6576b6 is the SHA-1 of any commit that

you know was before the rename. The output should resemble listing 4.1.
5 Check the names of the files in the directory by running ls *.asciidoc*.
6 When the .asciidoc file is named GitInPractice.asciidoc, run git bisect good to

indicate that the file hasn’t been renamed yet. When the .asciidoc file is named
01-IntroducingGitInPractice.asciidoc, run git bisect bad to indicate that the
file has been renamed. The output should be similar each time. No other
parameters are required to git bisect good or git bisect bad; they automat-
ically check out the next revision to be checked when they’re run.

7 Eventually the first bad commit will be found. The output should resemble list-
ing 4.2.

8 Run git bisect reset. The output should resemble listing 4.3.

git bisect good

Bisecting: 3 revisions left to test after this (roughly 2 steps)
[ac14a50465f37cfb038bdecd1293eb4c1d98a2ee] Start Chapter 2.

B shows how many revisions remain untested and, using the binary search algorithm,
roughly how many more git bisect invocations remain until you find the prob-
lematic commit.

C shows the new commit SHA-1 that git bisect has checked out for examining
whether this commit is good (the bug isn’t present) or bad (the bug is present).

git bisect bad

c6eed6681efc8d0bff908e6dbb7d887c4b3fab3e is the first bad commit
commit c6eed6681efc8d0bff908e6dbb7d887c4b3fab3e
Author: Mike McQuaid <mike@mikemcquaid.com>

Listing 4.10 Output: first good bisect

Listing 4.11 Output: final bad bisect

BSteps remaining

New commC

BBisect result

Commit
informationC
www.it-ebooks.info

http://www.it-ebooks.info/

80 CHAPTER 4 History visualization
Date: Thu Nov 28 15:39:38 2013 +0000

Rename book file to first part file.

:000000 100644 00
5e02125ebbc8384e8217d4370251268e867f8f03 A
01-IntroducingGitInPractice.asciidoc

:100644 000000 5e02125ebbc8384e8217d4370251268e867f8f03
00 D
GitInPractice.asciidoc

B shows the commit that has been identified as causing the bug or, in this case, the
rename. This matches the commit message here, so this is a slightly silly example,
but typically it allows you to then examine these changes and identify what in this
commit caused the regression.

C shows the git show information for this commit.

D shows the old and new file mode and SHA-1 for the new object (after renaming).

E shows the old and new file mode and SHA-1 for the old object (before renaming).

From figure 4.2, you can see that git bisect creates new, temporary refs (they’re
removed by git bisect reset) as it is working. These indicate the commits that were
marked by git bisect bad and git bisect good while working through the history.
The refs/bisect/bad ref points to the final, bad commit that was detected.

You’ve located the commit that renamed GitInPractice.asciidoc.

Discussion

Each time git bisect good, git bisect bad, or git bisect reset is run, Git checks
out the relevant next commit for examination. As a result, it’s important to ensure
that all outstanding changes have been committed (or stashed) before you use git
bisect.

 As you can see from table 4.1, as the number of commits increases, the maximum
number of commits that need to be checked increases much more slowly. This algo-
rithm means you can quickly navigate through a huge number of commits with git
bisect without too many steps.

New object
metadataD

Old object metadataE

Figure 4.2 GitX bisect output before git bisect reset
www.it-ebooks.info

http://www.it-ebooks.info/

81TECHNIQUE 32 Finding which commit caused a particular bug: git bisect

If you wish to examine the steps followed in a git bisect operation, you can run git
bisect log.

git bisect log

git bisect start
bad: [36640a59af951a26e0793f8eb0f4cc8e4c030167]
Ignore .tmp files.

git bisect bad 36640a59af951a26e0793f8eb0f4cc8e4c030167
good: [6576b6803e947b29e7d3b4870477ae283409ba71]
Initial commit of book.

git bisect good 6576b6803e947b29e7d3b4870477ae283409ba71
good: [ac14a50465f37cfb038bdecd1293eb4c1d98a2ee]
Start Chapter 2.

git bisect good ac14a50465f37cfb038bdecd1293eb4c1d98a2ee
bad: [fcd8f6e957a03061cdf411851fe38034a44c97ab]
Add first review temporary file.

git bisect bad fcd8f6e957a03061cdf411851fe38034a44c97ab
bad: [c6eed6681efc8d0bff908e6dbb7d887c4b3fab3e]
Rename book file to first part file.

git bisect bad c6eed6681efc8d0bff908e6dbb7d887c4b3fab3e
first bad commit: [c6eed6681efc8d0bff908e6dbb7d887c4b3fab3e]
Rename book file to first part file.

B shows the git bisect command invoked at this step.

C shows the status and SHA-1 of a commit.

D shows the commit subject of a commit.

E shows the final result of the entire bisect operation.

If you already know a bug came from particular files or paths in the working tree, you
can specify these to git bisect start. For example, if you knew the changes that
caused the regression were in the src/gui directory, you could run git bisect start
src/gui. This means only the commits that changed the contents of this directory will
be checked, which makes things even faster.

 If it’s difficult or impossible to tell whether a particular commit is good or bad, you
can run git bisect skip, which will ignore it. Given enough other commits, git
bisect will use another to narrow the search instead.

Table 4.1 Bisect binary search performance

Total commits Max checked commits

10 6

100 13

1000 19

Listing 4.12 Output: bisect log

Bisect commandB
Commit SHA-1C

Commit subjectD

Bisect
resultE
www.it-ebooks.info

http://www.it-ebooks.info/

82 CHAPTER 4 History visualization
4.5 Automating git bisect
git bisect is already useful, but wouldn’t it be even better if, rather than having to
keep typing git bisect good or git bisect bad, it could run automatically and tell
you which commit caused the regression? This is possible with git bisect run.

 git bisect run is run instead of git bisect good or git bisect bad (after a git
bisect start, git bisect good, or git bisect bad, and before a git bisect reset)
and automates future runs of git bisect good and git bisect bad. It uses the exit
code of a process to identify whether the command was successful. For example, if you
run the command ls GitInPractice.asciidoc, it returns an exit code of 0 on success
(when the file is present) and 1 on failure (when the file is not). Let’s take advantage
of this to use it with git bisect run.

git bisect start

git bisect bad

git bisect good 6576b6

Bisecting: 3 revisions left to test after this (roughly 2 steps)
[ac14a50465f37cfb038bdecd1293eb4c1d98a2ee] Start Chapter 2.

git bisect run ls GitInPractice.asciidoc

Bisecting: 3 revisions left to test after this (roughly 2 steps)
[ac14a50465f37cfb038bdecd1293eb4c1d98a2ee]
Start Chapter 2.

running ls GitInPractice.asciidoc
GitInPractice.asciidoc
Bisecting: 1 revision left to test after this (roughly 1 step)
[fcd8f6e957a03061cdf411851fe38034a44c97ab]
Add first review temporary file.

running ls GitInPractice.asciidoc
ls: GitInPractice.asciidoc: No such file or directory
Bisecting: 0 revisions left to test after this (roughly 0 steps)
[c6eed6681efc8d0bff908e6dbb7d887c4b3fab3e]
Rename book file to first part file.

running ls GitInPractice.asciidoc
ls: GitInPractice.asciidoc: No such file or directory
c6eed6681efc8d0bff908e6dbb7d887c4b3fab3e is the first bad commit
commit c6eed6681efc8d0bff908e6dbb7d887c4b3fab3e
Author: Mike McQuaid <mike@mikemcquaid.com>
Date: Thu Nov 28 15:39:38 2013 +0000

Rename book file to first part file.

:000000 100644 00
5e02125ebbc8384e8217d4370251268e867f8f03 A
01-IntroducingGitInPractice.asciidoc

:100644 000000 5e02125ebbc8384e8217d4370251268e867f8f03
00 D
GitInPractice.asciidoc

bisect run success

Listing 4.13 Output: bisect run
www.it-ebooks.info

http://www.it-ebooks.info/

83 Summary
The output is identical to the git bisect log output or the combined output of all
the other git bisect operations. No human intervention was required in the preced-
ing output; it ran until it reached a result.

 A typical case would be writing a unit test that reproduces a regression and using
that with git bisect run to quickly test a large number of commits.

HOW CAN YOU STOP GIT BISECT FROM OVERWRITING YOUR TEST? Because git
bisect good and git bisect bad perform a git checkout each time, you
need to make sure the regression test isn’t overwritten by other files or com-
mitted after the earliest bad commit. The easiest way to do this is to make a
copy of the test in another directory outside the Git working directory, so git
bisect run won’t change its contents as it checks out different commits.

4.6 Summary
In this chapter, you learned the following:

 How to filter git log output by author, date, commit message, and merge
commits

 How to display only a single commit or a requested number of commits
 How to display git log output in various formats
 How to display commits in an open source release-announcement format
 How to display branching effectively with git log
 How to show who changed each line of a file, when, and why, and the original

filename
 How to use git bisect to search quickly (but manually) through the history

with git bisect good and git bisect bad, to identify regressions
 How to use git bisect run to search automatically through the history to iden-

tify regressions with a test
www.it-ebooks.info

http://www.it-ebooks.info/

Advanced branching
When working as part of a team on a software project, you’ll typically use branches
to separate work between individuals, features, bug fixes, and software releases. You
should already be able to perform some basic branching actions, such as creating,
deleting, and merging a branch. This chapter will expand on those so you can
improve your branching workflow to be more effective. Let’s start by learning how
to use some of the parameters provided by git merge.

This chapter covers
 Configuring git merge’s behavior

 Resolving merge conflicts

 Avoiding having to solve the same merge conflicts
multiple times

 Creating a tag

 Generating a version number from previous tags

 Bringing individual commits from one branch to
another

 Reverting a previous commit

 Listing what branches contain a given commit
84

www.it-ebooks.info

http://www.it-ebooks.info/

85TECHNIQUE 33 Merging branches and always creating a merge commit
Technique 33 Merging branches and always creating
a merge commit

You learned in technique 14 how to perform a basic merge of two branches by using
git merge branchname, where branchname is the name of the branch you wish to
merge into the current branch.

 Recall that a merge commit is one that has multiple parents and is displayed in GitX
by the convergence of two or more branch tracks. git merge provides various options
for merging branches without creating merge commits, using various strategies or
resolving conflicts with a graphical merge tool.

WHY WOULD YOU WANT TO FORCE THE CREATION OF A MERGE COMMIT? Although
fast-forward merges can sometimes be useful in some Git workflows, you
should explicitly signify the merging of a branch even if it isn’t necessary to
do so. This explicit indication of a merge through the creation of a merge
commit can show all the metadata present in any other commit, such as who
performed the merge, when, and why. In software projects, merging a new
feature is usually done by merging a branch, and it’s useful for regression test-
ing and history visualization for this feature merge to be more explicit.

Let’s start by setting up how to perform a merge that could be made without creating
a merge commit: a fast-forward merge. Recall that a fast-forward merge means the
incoming branch has the current branch as an ancestor. This means commits have
been made on the incoming branch, but none have been made on the current branch
since the incoming branch was branched from it.

 You’re creating a branch that can have a fast-forward merge. This is so when you
create a merge commit, you know it was because it was specifically requested, not
because it was required.

 Let’s create a branch that can be merged without a merge commit:

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout -b chapter-spacing.
3 Edit 01-IntroducingGitInPractice.asciidoc to add a line break between chapters.
4 Run git commit --message 'Add spacing between chapters' 01-Introducing-

GitInPractice.asciidoc. The output should resemble the following.

git commit --message 'Add spacing between chapters'
01-IntroducingGitInPractice.asciidoc

[chapter-spacing 4426877] Add spacing between chapters
1 file changed, 1 insertion(+)

You can see from figure 5.1 that you’ve created a new branch named chapter-spacing
that can be merged without a merge commit into the master branch.

Listing 5.1 Output: fast-forward branch commit
www.it-ebooks.info

http://www.it-ebooks.info/

86 CHAPTER 5 Advanced branching
Problem

You wish to merge the chapter-spacing branch into the master branch and create a
merge commit—not perform a fast-forward merge.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout master.
3 Run git merge --no-ff chapter-spacing. You’ll be prompted for a commit mes-

sage, but you can accept the default. The output should resemble the following.

git merge --no-ff chapter-spacing

Merge made by the 'recursive' strategy.
01-IntroducingGitInPractice.asciidoc | 1 +
1 file changed, 1 insertion(+)

B shows that this was a merge (rather than a fast-forward) and therefore produced a
merge commit. It used the recursive Git merge strategy (we’ll discuss strategies more
in the discussion section).

C shows a short summary of the changes made in this merge commit—all the differ-
ences between the master branch and the chapter-spacing branch.

You can now delete the merged chapter-spacing branch by running git branch
--delete chapter-spacing from the master branch.

 You’ve now merged the chapter-spacing branch into the master branch and
forced a merge commit to be created.

Discussion

A merge commit has two parents: the previous commit on the current branch (master
in this case) and the previous commit on the incoming branch (chapter-spacing in
this case). You can see from figure 5.2 that GitX shows a merge commit differently
from a fast-forward. Even when the chapter-spacing branch is deleted, the existence
of a branch remains implied by the visual branching and merging in GitX.

 In this case, where the branch contained a single commit, this may not be terribly
useful. But on larger features, this explicit indication of branches can aid history
visualization.

Listing 5.2 Output: forced merge commit

Figure 5.1 Local repository before
merge without a merge commit

Merge typeB

Diff summaryC
www.it-ebooks.info

http://www.it-ebooks.info/

87 Merge strategies
git merge can also take a --ff-only flag, which does the opposite of no-ff: it ensures
that a merge commit is never created. If the merge can only be made with a merge
commit (there are conflicts that need to be resolved and marked in a merge commit),
the merge isn’t performed.

5.1 Merge strategies
A merge strategy is an algorithm that Git uses to decide how to perform a merge. The
previous merge output stated that it was using the recursive merge strategy.

 You can select a strategy by passing the --strategy (or -s) flag to git merge, fol-
lowed by the name of the strategy. For example, to select the default, recursive strat-
egy, you could also call git merge --strategy=recursive.

 Certain strategies (such as recursive) can also take options by passing the
--strategy-option (or -X) flag. For example, to set the patience diff option for the
recursive strategy, you’d call git merge --strategy-option=patience.

 The following are some useful merge strategies:

 recursive—Merges one branch into another and automatically detects
renames. This strategy is the default if you try to merge a single branch into
another.

 octopus—Merges multiple branches at once but fails on a merge conflict. This
strategy is the default if you try to merge two or more branches into another by
running a command like git merge branch1 branch2 branch3. You’ll never
set it explicitly, but it’s worth remembering that you can’t manually resolve
merge conflicts if you merge multiple branches at once. In my experience, this
means it’s worth always merging branches one at a time.

 ours—Performs a normal merge but ignores all the changes from the incom-
ing branch. This means the resulting tree is the same as it was before the merge.
This can be useful when you wish to merge a branch and indicate this in the his-
tory without wanting to include any of its changes. For example, you could use
this to merge the results of a failed experiment and then delete the experimen-
tal branch afterward. In this case, the experiment would remain in the history
without being in the current code.

 subtree—A modified version of the recursive strategy that detects whether
the tree structures are at different levels and adjusts them if needed. For exam-
ple, if one branch had all the files in the directory A/B/C and the other had all
the same files in the directory A/B, then the subtree strategy would handle this

Figure 5.2 Local repository after git
merge --no-ff chapter-spacing
www.it-ebooks.info

http://www.it-ebooks.info/

88 CHAPTER 5 Advanced branching
case; A/B/C/README.md and A/B/README.md could be merged despite their
different tree locations.

Some useful merge strategy options for a recursive merge (currently the only strategy
with options) are as follows:

 ours—Automatically solves any merge conflicts by always selecting the previous
version from the current branch (instead of the version from the incoming
branch).

 theirs—The reverse of ours. This option automatically solves any merge con-
flicts by always selecting the version from the incoming branch (instead of the
previous version from the current branch).

 patience—Uses a slightly more expensive git diff algorithm to try to decrease
the chance of a merge conflict.

 ignore-all-space—Ignores whitespace when selecting which version should
be chosen in case of a merge conflict. If the incoming branch has made only
whitespace changes to a line, the change is ignored. If the current branch has
introduced whitespace changes but the incoming branch has made non-
whitespace changes, then that version is used.

Neither of these lists is exhaustive, but these are the strategies and options I’ve found
are most commonly used. You can examine all the merge strategies and options by
running git help merge.

Technique 34 Resolving a merge conflict
As mentioned previously, sometimes when you merge one branch into another, there
will have been changes to the same part of the same file in both branches, and Git can’t
detect automatically which of these changes is the desired one to include. In this situ-
ation you have what’s known as a merge conflict, which you’ll need to resolve manually.

 These situations tend to occur more often in software projects where multiple
users are working on the same project at the same time. One user might make a bug
fix to a file while another refactors it, and when the branches are merged, a merge
conflict results.

 Let’s create a new branch and change the same files in both branches to produce a
merge conflict:

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout -b separate-files.
3 Run git mv 01-IntroducingGitInPractice.asciidoc 00-Preface.asciidoc.
4 Cut the “Chapter 2” section from 00-Preface.asciidoc, and paste it into a new

file named 02-AdvancedGitInPractice.asciidoc.
5 Cut the “Chapter 1” section from 00-Preface.asciidoc, and paste it into a new

file named 01-IntroducingGitInPractice.asciidoc.
www.it-ebooks.info

http://www.it-ebooks.info/

89TECHNIQUE 34 Resolving a merge conflict
6 Run git add.
7 Run git commit --message 'Separate files.'. The output should resemble

the following.

git commit --message 'Separate files.'

[separate-files 4320fad] Separate files.
3 files changed, 3 insertions(+), 4 deletions(-)
create mode 100644 00-Preface.asciidoc
create mode 100644 02-AdvancedGitInPractice.asciido

Now let’s change the same file in the master branch:

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout master.
3 Edit 01-IntroducingGitInPractice.asciidoc to add content for chapter 1.
4 Run git commit --message 'Add Chapter 1 content.' 01-IntroducingGit-

InPractice.asciidoc. The output should resemble the following.

git commit --message 'Add Chapter 1 content.'
01-IntroducingGitInPractice.asciidoc

[master 7a04d8f] Add Chapter 1 content.
1 file changed, 3 insertions(+), 1 deletion(-)

After these edits, you can use the git show command with a branchname:filename
argument to show the current state of the 01-IntroducingGitInPractice.asciidoc file on
each branch.

git show master:01-IntroducingGitInPractice.asciidoc

= Git In Practice
Chapter 1
It is a truth universally acknowledged, that a single person in
possession of good source code, must be in want of a version control
system.

Chapter 2
// TODO: write two chapters

git show separate-files:01-IntroducingGitInPractice.asciidoc

Chapter 1
// TODO: think of funny first line that editor will approve.

Figure 5.3 shows the current state of the master and separate-files branches in
GitX.

Listing 5.3 Output: committing separate files

Listing 5.4 Output: committing chapter 1 content

Listing 5.5 Current state on branches
www.it-ebooks.info

http://www.it-ebooks.info/

90 CHAPTER 5 Advanced branching

Uncha
Problem

You wish to merge the separate-files branch into the master branch and resolve
the resulting merge conflict.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout master.
3 Run git merge separate-files. The output should resemble the following.

git merge separate-files

Auto-merging 01-IntroducingGitInPractice.asciidoc
CONFLICT (content): Merge conflict in

01-IntroducingGitInPractice.asciidoc
Automatic merge failed; fix conflicts and then commit the result.

B shows Git attempting to find a way to solve the merge automatically using the
default, recursive merge strategy.

C shows that the merge strategy was unable to automatically solve the merge conflict,
so it requires human intervention.

Now you need to edit 01-IntroducingGitInPractice.asciidoc and solve the merge con-
flict. When you open the file, you’ll see something resembling the following.

Chapter 1

<<<<<<< HEAD

It is a truth universally acknowledged, that a single person in

possession of good source code, must be in want of a version control

system.

Chapter 2

// TODO: write two chapters

=======

// TODO: think of funny first line that editor will approve.

>>>>>>> separate-files

Listing 5.6 Output: merge with a conflict

Listing 5.7 Before merge-conflict resolution

Figure 5.3 Local repository
before merge-conflict resolution

Merge attemptB

Merge conflictC

nged
line B

Incoming markerC
Incoming
line

D

Branch separatorE

Current
versionF

Current markerG
www.it-ebooks.info

http://www.it-ebooks.info/

91TECHNIQUE 34 Resolving a merge conflict
Recall this output and annotations from section 2.2:

B is provided for context.

C starts the current branch section containing the lines from the current branch (ref-
erenced by HEAD here).

D shows a line from the incoming branch.

E starts the section containing the lines from the incoming branch.

F shows a line from the current branch.

g ends the section containing the lines from the incoming branch (referenced by
separate-files, the name of the branch being merged in).

You now need to edit the file so it has the correct version. In this case, this involves
removing the chapter 2 section, because it was moved to another file in the separate-
files branch, and using the new chapter 1 content that was entered in the master
branch (here indicated by the HEAD section).

 After editing, the file should resemble the following.

Chapter 1
It is a truth universally acknowledged, that a single person in
possession of good source code, must be in want of a version control
system.

Now that the merge conflict has been resolved, it can be marked as resolved with git
add and then the merge commit committed. You don’t need to run git merge again;
you’re still in the middle of a merge operation, which concludes when you git commit:

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git add 01-IntroducingGitInPractice.asciidoc.
3 Run git commit. Accept the default commit message. The output should resem-

ble the following.

[master 725c33a] Merge branch 'separate-files'

You can run git branch --delete separate-files to delete the branch now that it’s
merged.

 You’ve merged two branches and resolved a merge conflict.

Discussion

Merge commits have default commit message formats and slightly different diff out-
put. Let’s take a look at the merge commit by running git show master.

Listing 5.8 After merge-conflict resolution

Listing 5.9 Output: committing the merge conflict
www.it-ebooks.info

http://www.it-ebooks.info/

92 CHAPTER 5 Advanced branching

git show master

commit 725c33ace6cd7b281c2d3b342ca05562d3dc7335
Merge: 7a04d8f 4320fad
Author: Mike McQuaid <mike@mikemcquaid.com>
Date: Sat Feb 1 14:55:38 2014 +0100

Merge branch 'separate-files'

Conflicts:
01-IntroducingGitInPractice.asciidoc

diff --cc 01-IntroducingGitInPractice.asciidoc
index 6a10e85,848ed39..c9cda9c
--- a/01-IntroducingGitInPractice.asciidoc
+++ b/01-IntroducingGitInPractice.asciidoc
@@@ -1,8 -1,2 +1,4 @@@
- = Git In Practice 1

== Chapter 1
-// TODO: think of funny first line that editor will approve.
+It is a truth universally acknowledged, that a single person in
+possession of good source code, must be in want of a version control
+system.

-
- == Chapter 2
- // TODO: write two chapters

B shows the default commit message subject for merge commits. It specifies the
incoming branch name. It can be changed; but I prefer to leave it as is and add any
additional information in the commit message body instead, so it’s easily recogniz-
able from the subject alone as a merge commit.

C shows a file that had conflicts to be resolved manually. Sometimes these conflicts
may be resolved incorrectly, so this list is useful in spotting which files required res-
olution so they can be reviewed by other people later.

D shows a line that was deleted in the incoming (separate-files) branch’s com-
mit(s). The - is in the first column as a result.

E shows a line that was deleted in the current (master) branch’s commit(s). The - is
in the second column as a result.

F shows a line that was inserted in the current (master) branch’s commit(s). The + is
in the second column as a result.

In this diff there are two columns (rather than the usual one) allocated for - and +
markers. This is because whereas a normal diff indicates insertions into and deletions
from a file, this merge diff shows file insertions and deletions and the branch in which
they were inserted or removed. For example, in the preceding listing, the first column
indicates a line inserted into or deleted from the incoming branch (separate-
files), and the second column indicates a line inserted into or deleted from the
current branch (master). Don’t worry about identifying which column is which; it’s
not very important but provides more context for changes.

Listing 5.10 Output: merge commit

Merge subjectB

Conflicted fileC

Incoming deleteD Current
delete

E

Current insert F
www.it-ebooks.info

http://www.it-ebooks.info/

93 Using a graphical merge tool
 You can see from figure 5.4 that the
changes from both branches are visible in
the GitX output and that they’re not always
shown in chronological order. The Add
Chapter 1 content commit occurs before the
Separate files. commit even although it
was made 3 minutes later.

5.2 Using a graphical merge tool
Instead of manually editing the contents of a file, you can instead run git mergetool,
which runs a graphical merge tool such as emerge, gvimdiff, kdiff3, meld, vimdiff,
opendiff, or tortoisemerge. Details of how to configure git mergetool to use your
tool of choice are available by running git help mergetool.

 Sometimes it can be helpful to use a graphical merge tool to be able to visualize
conflicts graphically and understand how they relate to the changes that have been
made by viewing them, say, side by side. Although I personally tend not to use these
tools anymore, I found them useful when learning how to use version control.

 You can also customize the tool that is used to specify your own merge tools.
Figure 5.5 shows the opendiff tool provided with OS X being used to resolve the pre-
vious merge conflict.

WHO SHOULD RESOLVE MERGE CONFLICTS? In Git, the person who makes a
merge (runs the git merge command) should always be the person who
resolves a merge conflict. This may differ from other version control systems.
Additionally, this may sometimes mean that if a conflict resolution requires a
particular member of a team to be able to pick the correct resolution, the git
merge should be done by this person.

Figure 5.5 opendiff merge-conflict resolution

Figure 5.4 Local repository after
merge-conflict resolution
www.it-ebooks.info

http://www.it-ebooks.info/

94 CHAPTER 5 Advanced branching
Technique 35 Resolving each merge conflict only once: git rerere
You may find yourself in a situation where you have a long-running branch that you
have to keep merging in another branch, and you get the same merge conflicts every
time. It can be frustrating to have to manually resolve the same merge conflict multiple
times; after all, isn’t repeatedly performing boring tasks what computers are good for?

 Git has a command named git rerere (which stands for “Reuse Recorded Resolu-
tion”) that integrates with the normal git merge workflow to record the resolution of
merge conflicts for later replay. In short, you only need to solve a particular merge con-
flict once. I always tend to enable this when I use Git, because it runs automatically to
ensure that I don’t need to solve the same merge conflicts multiple times if I’m doing
something like repeatedly merging the same branch, which produces the same conflict.

 When git rerere is enabled, it stores the changes before a merge conflict and
compares them to after the merge conflict was resolved. This is used to fingerprint a
particular merge conflict based on the entire contents of the conflict (the changes
from both branches). This fingerprint is then used whenever there’s another merge
conflict, to compare against all the previously resolved merge conflicts. If a merge
conflict is detected to be the same, then git rerere reuses the previously recorded
merge-conflict resolution and edits the files as if you had resolved it manually. You still
need to use git add to mark the merge conflict as resolved, however; this is in case
you’ve decided to resolve this merge conflict in a slightly different way, so Git gives you
a chance to edit it.

 Let’s learn how to set up git rerere.

Problem

You want to set up git rerere to integrate with the merge workflow so you don’t need
to repeatedly resolve the same merges.

Solution

Run git config --global --add rerere.enabled 1. There will be no output.
 You’ve enabled git rerere to automatically save and retrieve merge-conflict reso-

lutions in all repositories.

Discussion

You don’t need to run git rerere manually for it to store and retrieve merge con-
flicts. After enabling git rerere, you’ll see some slightly different output the next
time you run git commit after resolving a merge conflict.

git commit

Recorded resolution for '01-IntroducingGitInPractice.asciidoc'.
[master 725c33a] Merge branch 'separate-files'

Listing 5.11 rerere merge-conflict storage

rerere
storage
www.it-ebooks.info

http://www.it-ebooks.info/

95TECHNIQUE 36 Creating a tag: git tag
git rerere has been run by git commit to store the conflict and resolution so it can
recall the same resolution when it sees the same conflict.

 The output is as follows if the same conflict is seen again.

git merge separate-files

Auto-merging 01-IntroducingGitInPractice.asciidoc
CONFLICT (content): Merge conflict in

01-IntroducingGitInPractice.asciidoc
Resolved '01-IntroducingGitInPractice.asciidoc' using

previous resolution.
Automatic merge failed; fix conflicts and then commit the result.

git rerere has again been run by git merge to retrieve the resolution for the identi-
cal conflict. You still need to run git add to accept the conflict, and you can use git
diff or edit the file to ensure that the resolution was as expected and desired.

HOW CAN YOU MAKE GIT RERERE FORGET AN INCORRECT RESOLUTION? Some-
times you may want to make git rerere forget a resolution for a particular
file because you resolved it incorrectly. In this case, you can use git rerere
with a path to forget any resolutions for that file or directory. For example, to
forget the resolution on 01-IntroducingGitInPractice.asciidoc, you’d run git
rerere forget 01-IntroducingGitInPractice.asciidoc. There will be no
output.

Technique 36 Creating a tag: git tag
Remember refs from section 1.7? A tag is another ref (or pointer) for a single commit.
Tags differ from branches in that they’re (usually) permanent. Rather than pointing
to the work in progress on a feature, they’re generally used to describe a version of a
software project.

 For example, if you were releasing version 1.3 of your software project, you’d tag
the commit that you release to customers as v1.3 to store that version for later use.
Then if a customer later complained about something being broken in v1.3, you
could check out that tagged commit and test against it, confident that you were using
the same version of the software that the customer was. This is one of the reasons you
shouldn’t modify tags; once you’ve released a version to customers, if you want to
update it, you’ll likely release a new version such as 1.4 rather than changing the defi-
nition of 1.3.

 Figure 5.6 shows the current state of the master branch in GitX before the tag has
been created.

Listing 5.12 rerere merge-conflict retrieval

rerere
retrieval

Figure 5.6 Local repository
before git tag
www.it-ebooks.info

http://www.it-ebooks.info/

96 CHAPTER 5 Advanced branching
Problem

You wish to tag the current state of the GitInPracticeReduxmaster branch as version
v0.1.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout master.
3 Run git tag v0.1. There will be no output.
4 Run git tag. The output should resemble the following.

git tag

v0.1

B shows that there is a tag named v0.1 in the local repository. All tags in the current
repository (not just the current branch) are listed by git tag.

 You’ve created a v0.1 tag in the GitInPracticeRedux repository.

Discussion

You can see from figure 5.7 that after git tag, there’s a new v0.1 ref on the latest
commit on the master branch (in the GitX interface, this is yellow). This indicates
that this commit has been tagged v0.1.

Note that, unlike branches, when new commits are made on the master branch the
v0.1 tag won’t change. This is why tags are useful for versioning; they can record the
significance of a particular commit without changing it.

 git tag can take various flags:

 The --list (or -l) flag lists all the tags that match a given pattern. For exam-
ple, the tag v0.1 will be matched and listed by git tag list --v0.*.

 The --force (or -f) flag updates a tag to point to the new commit. This is use-
ful for occasions when you realize you’ve tagged the wrong commit.

 The --delete (or -d) flag deletes a tag. This is useful if you’ve created a tag
with the wrong name rather than just pointing to the wrong commit.

Run git push to push the master branch to origin/master. You may notice that it
doesn’t push any of the tags. After you’ve tagged a version and verified that it’s point-
ing to the correct commit and has the correct name, you can push it using git push

Listing 5.13 Output: tag listing

Version tagB

Figure 5.7 Local repository
after git tag
www.it-ebooks.info

http://www.it-ebooks.info/

97TECHNIQUE 37 Generating a version number based on previous tags: git describe
-tags. This pushes all the tags you’ve created in the local repository to the remote
repository. These tags will then be fetched by anyone using git fetch on the same
repository in future.

HOW CAN YOU UPDATE REMOTE TAGS? You’ve seen that by using git tag
--delete or git tag --force, it’s possible to delete or modify tags locally. It’s
also possible to push these changes to the remote repository with git push
--tags --force, but doing so is not advised. If other users of the repository
want to have their tags updated, they will need to delete them locally and
refetch. This is intentionally cumbersome, because Git intends tags to be
static and so doesn’t change them locally without users’ explicit intervention.

If you realize you’ve tagged the wrong commit and wish to update it after pushing, it’s
generally a better idea to tag a new version and push that instead. This complexity is
why git push requires the --tags argument to push tags.

Technique 37 Generating a version number based on
previous tags: git describe

You’ve seen that git tag can be used to identify certain commits as released versions
of a project. I’m a passionate advocate of continuous integration systems, and I’ve
worked on desktop software projects with semantic versioning (such as 1.0.0). On
these projects, I’ve set up continuous integration systems to create installers of the
software on every commit to the master branch.

 But some software has an About screen that displays the software’s version. In this
case, I’d like to have a version number generated that makes sense but doesn’t rely on
auto-generating a tag for each version of the software and is sortable with some infor-
mation about the current version of the software. Something like v0.1-1-g0a5e328
would be preferential to a short revision like g0a5e328.

 The expected version number would be v0.1, given that has just been tagged, so
let’s make another modification to the GitInPracticeRedux repository and generate
a version number for the new, untagged commit:

1 Change to the directory containing your repository: for example
cd /Users/mike/GitInPracticeRedux/.

2 Add some content to the 00-Preface.asciidoc file.
3 Run git commit --message 'Add preface text.' 00-Preface.asciidoc. The

output should resemble the following.

git commit --message 'Add preface text.

[master 0a5e328] Add preface text.
1 file changed, 1 insertion(+)

Listing 5.14 Output: committing the preface
www.it-ebooks.info

http://www.it-ebooks.info/

98 CHAPTER 5 Advanced branching
Problem

You want to generate a version number for a software project based on existing tags in
the repository.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git describe --tags. The output should resemble the following.

git describe --tags

v0.1-1-g0a5e328

B shows the version generated from the state based on existing tags. It’s hyphenated
into three parts:

 v0.1 is the most recent tag on the current branch.
 1 indicates that one commit has been made since the most recent tag (v0.1) on

the current branch.
 g0a5e328 is the current commit SHA-1 prepended with a g (which stands for

git).

If you’d run git describe --tags when on the previous commit (the v0.1 tag), it
would’ve output v0.1.

 You’ve generated a version number based on the existing tags in the repository.

Discussion

If git describe is passed a ref, it generates the version number for that particular
commit. For example, git describe --tags v0.1 outputs v0.1, and git describe
--tags 0a5e328 outputs v0.1-1-g0a5e328.

 If you wish to generate the long-form versions for tagged commits, you can pass
the --long flag. For example, git describe --tags --long v0.1 outputs v0.1-0-
g725c33a.

 If you wish to use a longer or shorter SHA-1 ref, you can configure this using the
--abbrev flag. For example, git describe --tags --abbrev=5 outputs v0.1-1-
g0a5e3. Note that if you use very low values (such as --abbrev=1), git describe may
use more than you’ve requested if it requires more to uniquely identify a commit.

Technique 38 Adding a single commit to the current branch:
git cherry-pick

Sometimes you may wish to include only a single commit from a branch onto the cur-
rent branch rather than merging the entire branch. For example, you may want to
back-port a single bug-fix commit from a development branch into a stable release

Listing 5.15 Output: tag describe

Generated versionB
www.it-ebooks.info

http://www.it-ebooks.info/

99TECHNIQUE 38 Adding a single commit to the current branch: git cherry-pick
branch. You could do this by manually creating the same change on that branch, but a
better way is to use the tool that Git provides: git cherry-pick.

 Let’s create a new branch based off the v0.1 tag called v0.1-release so you have
something to cherry-pick:

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout -b v0.1-release v0.1.
3 Add some content to the 02-AdvancedGitInPractice.asciidoc file.
4 Run git commit --message 'Advanced practice technique.' 02-Advanced-

GitInPractice.asciidoc. The output should resemble the following.

git commit --message 'Advanced practice technique.'
02-AdvancedGitInPractice.asciidoc

[v0.1-release dfe2377] Advanced practice technique.
1 file changed, 1 insertion(+), 1 deletion(-)

Problem

You wish to cherry-pick a commit from the v0.1-release branch to the master
branch.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout master.
3 Run git cherry-pick v0.1-release. The output should resemble the

following.

git cherry-pick v0.1-release

[master c18c9ef] Advanced practice technique.
1 file changed, 1 insertion(+), 1 deletion(-)

B shows the result of the cherry-pick operation. Note that this is the same as the out-
put for the previous git commit command, with one difference: the SHA-1 has
changed.

WHY DOES THE SHA-1 CHANGE ON A CHERRY-PICK? Recall that the SHA-1 of a
commit is based on its tree and metadata (which includes the parent commit
SHA-1). Because the resulting master branch cherry-picked commit has a dif-
ferent parent than the commit that was cherry-picked from the v0.1-release
branch, the commit SHA-1 differs also.

Listing 5.16 Output: committing the release branch

Listing 5.17 Output: commit cherry-pick

Commit summaryB
www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 5 Advanced branching
You’ve cherry-picked a commit from the v0.1-release branch to the master branch.

Discussion

git cherry-pick (like many other Git commands) can take a ref as the parameter
rather than only a specific commit. As a result, you could have interchangeably used
git cherry-pick dfe2377 (where dfe2377 is the most recent commit on the
v0.1-release branch) in the previous example with the same result. You can pass
multiple refs to cherry-pick, and they will be cherry-picked onto the current branch
in the order requested.

HOW MANY COMMITS SHOULD YOU CHERRY PICK? Cherry-picking is best used
for individual commits that may be out of sequence. The classic use case high-
lighted earlier is back-porting bug fixes from a development branch to a sta-
ble branch. When this is done, it’s effectively duplicating the commits (rather
than sharing them as with a merge). If you find yourself wanting to cherry-
pick the entire contents of a branch, you’d be better off merging it instead.

git cherry-pick can take various flags:

 If the --edit flag is passed to git cherry-pick, it prompts you for a commit
message before committing.

 If you’re cherry-picking from a public branch (one you’ll push remotely) to
another public branch, you can use the -x flag to append a line to the cherry-
picked commit’s message saying which commit this change was picked from.
For example, if this flag had been used in the last example, the commit message
would have had
 (cherry picked from commit dfe2377f00bb58b0f4ba5200b8f4299d0bfeeb5d)
appended to it.

 When you want to indicate in the commit message which person cherry-picked
a particular change more explicitly than the Committer metadata set by default,
you can use the --signoff (or -s) flag. This appends a Signed-off-by line to
the end of the commit message. For example, if this flag had been used in the
last example, the commit message would have had Signed-off-by: Mike
McQuaid <mike@mikemcquaid.com> appended to it.

 If there’s a merge conflict on a cherry-pick, you need to resolve it in a fashion
similar to a git merge (or in the same fashion as git rebase, which you’ll see
later in technique 43). This involves resolving the conflict and running git add,
but then using git cherry-pick --continue instead of git commit to commit
the changes. If you want to abort the current cherry-pick, perhaps because
you’ve realized the merge conflict is too complex, you can do this using git
cherry-pick --abort.

www.it-ebooks.info

http://www.it-ebooks.info/

101TECHNIQUE 39 Reverting a previous commit: git revert
WHEN WOULD YOU SIGN OFF A COMMIT? Signing off a commit is generally used
in projects to indicate that a commit was checked by someone else before
being included. I’m a maintainer of the Homebrew open source project and
use signing off to indicate to other maintainers that I was the one who
merged this commit. This information is also included as the Author meta-
data in the commit, but the sign-off makes it more readily accessible. The
same process could be used in companies when a developer reviews the work
of another and wants to signify this in a commit message.

Technique 39 Reverting a previous commit: git revert
You may occasionally make a commit that you regret. You’ll then want to undo the
commit until you can fix it so it works as intended.

 In Git you can rewrite history to hide such mistakes (as you’ll learn later in tech-
nique 42), but this is generally considered bad practice if you’ve already pushed a
commit publicly. In these cases, you’re better off instead using git revert.

Problem

You wish to revert a commit to reverse its changes.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout master.
3 Run git revert c18c9ef. You’re prompted for a message. Accept the default.

The output should resemble the following.

git revert c18c9ef

[master 3e3c417] Revert "Advanced practice technique."
1 file changed, 1 insertion(+), 1 deletion(-)

To view the revert in more depth, run git show 3e3c417.

git show 3e3c417

commit 3e3c417e90b5eb3c04962618b238668d1a5dc5ab
Author: Mike McQuaid <mike@mikemcquaid.com>
Date: Sat Feb 1 20:26:06 2014 +0000

Revert "Advanced practice technique."

This reverts commit c18c9ef9adc73cc1da7238ad97ffb50758482e91.

diff --git a/02-AdvancedGitInPractice.asciidoc
b/02-AdvancedGitInPractice.asciidoc

index 0e0765f..7eb5017 100644

Listing 5.18 Output: revert

Listing 5.19 Output: revert show

Revert subject

Revert subjectB

Reversed
diffC
www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 5 Advanced branching
--- a/02-AdvancedGitInPractice.asciidoc
+++ b/02-AdvancedGitInPractice.asciidoc
@@ -1,2 +1,2 @@
== Chapter 2

-Practice doesn't make perfect; perfect practice makes perfect!
+// TODO: write two chapters

B shows the reverted commit’s subject prefixed with Revert. This should describe
what has been reverted fairly clearly; it can be edited on commit if it doesn’t.

C shows the body of the reverted commit, which includes the full SHA-1 of the com-
mit that was reverted.

D shows the diff of the new commit. It’s the exact opposite of the diff of the commit
that was reverted.

You’ve reverted a commit to reverse its changes.

Discussion

git revert can take a --signoff (or -s) flag, which behaves similarly to that of git
cherry-pick; it appends a Signed-off-by line to the end of the commit message. For
example, if this flag had been used in the last example, the commit message would
have had Signed-off-by: Mike McQuaid <mike@mikemcquaid.com> appended to it.

Technique 40 Listing what branches contain a commit: git cherry
If you have a workflow in which you don’t merge your commits to other branches but
rather have another person do it, you may wish to see which of your commits has been
merged to another branch. Git has a tool to do this: git cherry.

 Let’s make another commit on the v0.1-release branch first:

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout v0.1-release.
3 Add some content to the 00-Preface.asciidoc file.
4 Run git commit --message 'Add release preface.' 00-Preface.asciidoc.

The output should resemble the following.

[v0.1-release a8200e1] Add release preface.
1 file changed, 1 insertion(+)

Problem

You wish to see what commits remain unmerged to the master branch from the v0.1-
release branch.

Listing 5.20 Output: committing the release preface

Revert
message

D

www.it-ebooks.info

http://www.it-ebooks.info/

103 Summary

pable
it
Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout v0.1-release.
3 Run git cherry --verbose master. The output should resemble the following.

git cherry --verbose master

- dfe2377f00bb58b0f4ba5200b8f4299d0bfeeb5d Advanced practice technique.
+ a8200e1407d49e37baad47da04c0981f43d7c7ff Add release preface.

B is prefixed with - and shows a commit that has been already included into the
master branch.

C is prefixed with + and shows a commit that hasn’t yet been included into the
master branch.

You’ve seen which commits remain unmerged from the master branch.

Discussion

If you omit the --verbose (or -v) flag from git cherry, it shows just the -/+ and the
full SHA-1 but not the commit subject: for example,
- dfe2377f00bb58b0f4ba5200b8f4299d0bfeeb5d.

 When you learn about rebasing later in technique 43, you’ll see how git cherry can
be useful for showing what commits will be kept or dropped after a rebase operation.

5.3 Summary
In this chapter you learned the following:

 How to use git merge’s options to perform different types of merges
 How to resolve merge conflicts
 How to use git rerere to repeatedly replay merge-conflict resolutions
 How to use git tag to tag commits
 How to use git describe to generate version numbers for commits
 How to use git cherry-pick to bring individual commits from one branch to

another
 How to use git revert to reverse individual commits
 How to use git cherry to list what commits remain unmerged on a branch

Listing 5.21 Output: cherry

Drop
comm

B

Kept commitC
www.it-ebooks.info

http://www.it-ebooks.info/

Rewriting history
and disaster recovery
Technique 4 briefly discussed that Git is capable of rewriting the history of a reposi-
tory. Because each repository contains the entire history, this ranges from undoing
a single commit to rewriting data on every commit in the repository. I make use of
rewriting history regularly to ensure that merged branches have a clean, readable
history made up of small commits before merging. You can read more about this in
section 13.2 and chapter 14. Before jumping in to rewriting history, let’s start by
learning about how to avoid losing committed data using git reflog.

This chapter covers
 Viewing the history of all changes made to

branches over time

 Making a branch point to a previous commit

 Changing the parent of commits to point to
another

 Forcing push-rewritten history to a remote
repository

 Rewriting the entire history of a branch

 Avoiding losing your work
104

www.it-ebooks.info

http://www.it-ebooks.info/

105TECHNIQUE 41 Listing all changes including history rewrites: git reflog

com
Technique 41 Listing all changes including history rewrites: git reflog
Recall from technique 3 that each commit points to the previous (parent) commit
and that this is repeated all the way to the branch’s initial commit. As a result, the
branch pointer can be used to reference not just the current commit it points to, but
also every previous commit. If a previous commit changes in any way, then its SHA-1
hash changes too. This in turn affects the SHA-1 of all its descendant commits. This
provides good protection in Git from accidentally rewriting history, because all com-
mits effectively provide a checksum of the entire branch up until this point.

 Git’s reflog (or reference log) is updated whenever a commit pointer is updated (like a
HEAD pointer or branch pointer). This includes previous actions you’ve seen that don’t
involve rewriting history, such as committing and changing branches. Let’s see the
reflog contents for your previous actions on the repository.

Problem

You wish to view the state of the reflog for the HEAD pointer.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout master.
3 Run git reflog. The output should resemble the following.

git reflog

3e3c417 HEAD@{0}: checkout: moving from v0.1-release to master
a8200e1 HEAD@{1}: commit: Add release preface.
dfe2377 HEAD@{2}: checkout: moving from master to v0.1-release
3e3c417 HEAD@{3}: revert: Revert "Advanced practice technique."
...

B shows that you called git checkout to move from the v0.1-release branch to the
master branch. This was the most recent action performed, and it changed the
HEAD pointer.

C shows that you used git commit to create a new commit in the repository with the
subject Add release preface.

D shows that you reverted a previous commit, which created a new commit with the
message Revert “Advanced practice technique.”. Note that this is the same SHA-1 as B,
because they both point to the latest commit on the master branch.

Let’s compare this to the current GitX output. You can see in figure 6.1 that the
SHA-1s match those in the git reflog output:

 The latest commit on the v0.1-release branch (a8200e1, HEAD@{1})
 The penultimate commit on the v0.1-release branch (dfe2377, HEAD@{2})
 The latest commit on the master branch (3e3c417, HEAD@{0}, HEAD@{3})

Listing 6.1 Reflog output

Change
of branch

B

New
mit C

Revert
commit

D

www.it-ebooks.info

http://www.it-ebooks.info/

106 CHAPTER 6 Rewriting history and disaster recovery
Recall that in section 1.7 you learned some different types of refs. HEAD@{0} is another
type of ref and can be used with commands such as git log and git cherry-pick to
view the state based on that commit. I always prefer to use the SHA-1, because SHA-1s
for particular commits never change (even with the history rewriting you’ll learn later
this chapter), but HEAD@{0} for example will change with any action that affects the
HEAD pointer.

 Remember git stash from technique 23? When you use the git stash com-
mands, they don’t appear in the git reflog output. Again, for this reason, once you
learn about rewriting history in this chapter, I’d recommend making commits and
rewriting them later rather than relying too much on git stash.

 You have viewed the changing state of the HEAD pointer by viewing the reflog.

Discussion

Running git reflog is an alias for git log --walk-reflogs --abbrev-commit --pretty
=oneline. git reflog can also take all git log flags such as --max-count and
--patch. You can see the git log formatting flags in technique 30.

 Like git log, git reflog can be passed a ref as the final argument. If this isn’t
specified, it defaults to HEAD. For example, you can view how the master branch has
changed over time by using git reflog master.

ARE REFLOGS SHARED BETWEEN REPOSITORIES? Reflogs are per repository.
They aren’t shared with other repositories when you git push and aren’t
fetched when you git fetch. As a result, they can only be used to see actions
that were made in the Git repository on your local machine. Bear this in mind
when you’re rewriting history: you can easily view the previous state on your
current machine, but not that from other machines.

6.1 Avoiding and recovering from disasters
Despite the scary phrase “rewriting history,” you’ll see throughout this chapter that
any operation that acts on commits (such as git rebase) rather than the working
directory (such as git reset --hard with uncommitted changes) is easily recoverable
using git reflog for 90 days after the changes were made.

 The main rule to avoid data loss therefore is commit early and commit often. Now that
you know how to rewrite history, you should think of committing not as a complex
operation but similar to a Save operation in most other pieces of software. Commit

HEAD@{1}

HEAD@{2}

HEAD@{0}
HEAD@{3}

Figure 6.1 GitX reflog comparison output
www.it-ebooks.info

http://www.it-ebooks.info/

107TECHNIQUE 42 Resetting a branch to a previous commit: git reset
whenever you’ve written anything useful that you don’t want to lose, and then rewrite
your history later into small, readable commits.

 The easiest (and most common) way to lose data with Git is when it hasn’t been
committed and you accidentally run git reset --hard or git checkout --force, and
it’s overwritten on disk. This can be somewhat avoided by having regular backups of
your repository while you work (such as using Time Machine on OS X), but it’s gener-
ally better to let Git handle this for you by committing more often.

 Another way to secure your data with Git is to regularly push to remote work
branches that you’ve agreed nobody else will commit to. If you’ve agreed that no one
else will commit to these work branches, it’s reasonable to rewrite and force-push to
them in the same way you might rewrite a local branch. This means these changes will
be safe on the remote repository and downloaded by anyone else’s git fetch from
this repository. This is useful in case there is a hardware failure on your machine; you
can get back the data from the branch on the remote repository.

 If things ever go really badly and you suffer disk corruption with important but
unpushed commits in your repository, you can run the git fsck tool. It verifies the
integrity of the repository and prints out any missing or corrupt objects that it finds.
You can then remove these corrupt objects, restore them from backups, or check
whether other users of the same repository have the same objects. Hopefully the cor-
rupted objects aren’t those with the most recent work you wish to recover.

Technique 42 Resetting a branch to a previous commit: git reset
In technique 39 you learned how to use git revert to revert a commit that made
changes you want to undo. I stated previously that rewriting history is a bad practice if
the commit to be reverted has already been pushed publicly (I’ll elaborate more on
this later in this chapter). But what if the commit hasn’t been pushed yet? In this case
you can use a command you first saw in technique 19: git reset.

 When you used git reset previously, you used it either with no arguments (which
implies --mixed) or with --hard. Remember, --hard resets the index and the working
directory, and --mixed resets the index but not the working directory. In short, --hard
discards any uncommitted work, whereas --mixed unstages it (effectively reversing a
git add).

 git reset can also take a ref as an argument. Rather than just resetting to the last
commit, this allows you to reset a branch to any other commit in the repository.

 Let’s create a temporary commit (that hasn’t been pushed) that you can reset:

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout master.
3 Edit 00-Preface.asciidoc, and make a change to the file.
4 Run git commit --message="Update preface." 00-Preface.asciidoc. The

output should resemble the following.
www.it-ebooks.info

http://www.it-ebooks.info/

108 CHAPTER 6 Rewriting history and disaster recovery
git commit --message="Update preface." 00-Preface.asciidoc

[master 4455fa9] Update preface.
1 file changed, 1 insertion(+), 1 deletion(-)

In figure 6.2, you can see the state of GitX after the git commit.

In this case, let’s try resetting to the previous commit on the same branch; this is an
alternative to using git revert.

Problem

You wish to undo the last commit on the master branch.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout master.
3 Run git reset HEAD^. The output should resemble the following.

git reset HEAD^

Unstaged changes after reset:

M 00-Preface.asciidoc

B shows that undoing this commit has left the file modified, but its modifications
haven’t yet been added to the index. This could be done later with git add.

C shows that the 00-Preface.asciidoc file is currently in a modified state after the reset
operation.

Figure 6.3 shows the state of GitX after the git reset. The commit that was created by
the git commit command has disappeared from GitX.

You have reset the master branch pointer to point to a previous commit.

Listing 6.2 Output: commit to be reset

Listing 6.3 Output: resetting a commit

Figure 6.2 Commit to
be reset in GitX

Status messageB
Uncommitted changesC

Figure 6.3 GitX after resetting a commit
www.it-ebooks.info

http://www.it-ebooks.info/

109TECHNIQUE 42 Resetting a branch to a previous commit: git reset
Discussion

Remember when I said in technique 41 that git reflog is useful in avoiding the loss
of commits? Let’s imagine that you reset the previous commit but later realize this was
a mistake. Let’s run git reflog and see if you can get anything useful from the output.

git reflog HEAD

3e3c417 HEAD@{0}: reset: moving to HEAD^

4455fa9 HEAD@{1}: commit: Update preface.

3e3c417 HEAD@{2}: checkout: moving from v0.1-release to master

a8200e1 HEAD@{3}: commit: Add release preface.

...

B shows the commit-reset operation reset the state of the master branch to that
before this commit. The SHA-1 (3e3c417) matches that of the checkout before this
commit was made.

C shows the new commit that was made and then reset. The SHA-1 matches that out-
put from the previous git commit command.

reflog has kept the record that this reset was made and the SHA-1s at each stage in
this process. Let’s use the SHA-1 output by C from the reflog (and the previous git
commit command) to restore this commit again:

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout master.
3 Run git reset 4455fa9. There will be no output.

If you now examine figure 6.4, you’ll see that the commit has been restored and the
state is exactly the same as when it was made. The only record that the reset was ever
made is now in the reflog.

 Now run git push to send the commit to the remote repository.

WHEN ARE COMMITS REMOVED FROM THE REFLOG? Commits in the reflog that
are older than 90 days and not ancestors of any other, newer commit in the
reflog are removed by the git gc command. git gc can be run manually, but
it never needs to be because it’s run periodically by commands such as git
fetch. In short, when you’ve removed a commit from all branches, you have
90 days to recover the data before Git will destroy it. In my experience, this is
more than enough time; typically if I haven’t remembered that I accidentally
removed a commit within a few days, I never will.

Listing 6.4 Reflog output after resetting a commit

Commit resetB
New commitC

Figure 6.4 Restored
commit in GitX
www.it-ebooks.info

http://www.it-ebooks.info/

110 CHAPTER 6 Rewriting history and disaster recovery
WHAT’S THE DIFFERENCE BETWEEN GIT RESET AND GIT CHECKOUT? git reset
modifies the current branch pointer so it points to another commit. git
checkout modifies the HEAD pointer so it points to another branch (or, rarely,
commit). If you’re on the master branch, git reset --hard v0.1-release
sets the master branch to point to the top of the v0.1-release branch,
whereas git checkout v0.1-release changes the current branch (the HEAD
pointer) to point to the v0.1-release branch.

git reset can also take a list of paths as the last arguments to the command. These
can be separated using -- between the ref and the list of paths. The -- is optional but
makes more explicit the separation between the ref and paths. After all, it’s possible
(if unlikely) that you could have a file and path with the same name. For example, to
reset the contents of the 00-Preface.asciidoc file to the previous commit, you’d run
git reset HEAD^ -- 00-Preface.asciidoc.

 In addition to --hard and --mixed, git reset can also take a --soft argument.
The --soft argument can be compared to --mixed and --hard, as shown earlier.
Whereas --hard resets the index staging area and working tree (discards all the
changes) and --mixed resets the staging area but not the working tree (leaves the
changes but removes them from the staging area), --soft resets neither the staging
area nor the working tree but just changes the HEAD pointer to point to the previous
commit. This means if you run git commit (with no other arguments) after a git
reset --soft HEAD^, the contents of the index staging area (and therefore the com-
mit) will be the same as the commit that was just reset.

 You can also perform a combined reset and commit operation to modify the previ-
ous commit using git commit --amend. git commit --amend resets to the previous
commit and then creates a new commit with the same commit message as the commit
that was just reset. It uses git reset --soft HEAD^ and then runs git commit
--reedit-message with the previous (now reset) commit as an argument. This means
it adds anything you have currently added to the index staging area to the changes
from the previous commit and prompts for a new commit message. I most commonly
use this to adjust the previous commit message if I realize I’ve made a typo or omitted
useful information.

Technique 43 Rebasing commits on top of another branch:
git rebase

Recall from technique 13 that rebasing is similar to merging but requires rewriting
history. Let’s create a branch that you can rebase:

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout -b inspiration v0.1.
3 Edit 01-IntroducingGitInPractice.asciidoc, and make a change to the file.
4 Run git commit --message="Add Chapter 1 inspiration." 01-Introducing-

GitInPractice.asciidoc. The output should resemble the following.
www.it-ebooks.info

http://www.it-ebooks.info/

111TECHNIQUE 43 Rebasing commits on top of another branch: git rebase
git commit --message="Add Chapter 1 inspiration."
01-IntroducingGitInPractice.asciidoc

[inspiration 88e8b4b] Add Chapter 1 inspiration.
1 file changed, 1 insertion(+)

Figure 6.5 shows the new inspiration branch. It has a single commit, and the parent
of that commit is the commit that has the v0.1 tag.

Now let’s rebase this branch.

Problem

You wish to rebase the inspiration branch on top of the v0.1-release branch.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout inspiration.
3 Run git rebase v0.1-release. The output should resemble the following.

git rebase v0.1-release

First, rewinding head to replay your work on top of it...

Applying: Add Chapter 1 inspiration.

B shows that Git is moving the HEAD pointer to the latest commit on the v0.1-release
branch. It’s doing this so it can apply the newly created commit on the inspiration
branch with the latest commit on the v0.1-release branch as its parent.

C shows a list of each commit (in this case, only one) re-created on the branch. Effec-
tively, each commit on the branch being rebased is cherry-picked (discussed in tech-
nique 38) on top of the new base: the latest commit on the v0.1-release branch.
Because their parent commits have changed, so do the SHA-1s of all the commits.

Figure 6.6 shows the rebased inspiration branch. It still has a single commit, but that
commit’s parent is now the latest commit on the v0.1-release branch rather than
the commit tagged v0.1. Note that GitX reflowed and recolored some of the

Listing 6.5 Output: commit to be rebased

Listing 6.6 Rebase output

Figure 6.5 Newly created
inspiration branch

HEAD rewoundB
Applying a commitC
www.it-ebooks.info

http://www.it-ebooks.info/

112 CHAPTER 6 Rewriting history and disaster recovery

Re
compl

Re
chec
branches; master is now to the right of v0.1-release, and v0.1-release is now
green. This doesn’t have any significance beyond GitX trying to make the output
more readable.

 Note that some editions of this book are printed in grayscale, so these colors may
not be visible. Instead, please compare them to GitX on your computer.

 You have rebased the inspiration branch on top of the v0.1-release branch.

Discussion

The argument to git rebase can be any ref. You could rebase on an arbitrary commit,
but this is generally a bad idea. You should usually rebase on top of either an updated
branch or a different branch/tag.

 If you made multiple commits to the wrong branch, you can’t use git rebase as is
to fix this. But you can do so with git rebase --interactive, which you’ll see in
technique 44.

 Let’s look at the reflog again to see what effects the rebase had.

git reflog

5d4ad83 HEAD@{0}: rebase finished: returning to refs/heads/inspiration
5d4ad83 HEAD@{1}: rebase: Add Chapter 1 inspiration.
a8200e1 HEAD@{2}: rebase: checkout v0.1-release
88e8b4b HEAD@{3}: commit: Add Chapter 1 inspiration.
725c33a HEAD@{4}: checkout: moving from master to inspiration
4455fa9 HEAD@{5}: reset: moving to 4455fa9
3e3c417 HEAD@{6}: reset: moving to HEAD^
...

B shows that the rebase operation has completed successfully, so the inspiration
branch was updated to point to the rebased commit.

C shows the new commit that was created with the parent pointing to the latest com-
mit on the v0.1-release branch. The inspiration branch was updated after this
commit was successfully created. This avoids a situation where a failed rebase oper-
ation leaves a branch in an inconsistent state.

D shows the beginning of the rebase operation by checking out the v0.1-release
branch that is being used as a new parent.

E shows the new commit that was made before it was rebased.

If you wanted to undo this operation, you could run git branch --force inspiration
88e8b4b to reset the inspiration branch pointer to point back to the existing com-
mit, essentially undoing the rebase.

Listing 6.7 Reflog output after rebase

Figure 6.6 Rebased
inspiration branch

base
etion

B

Rebased commitC
base
kout D

Commit
pre-rebase E
www.it-ebooks.info

http://www.it-ebooks.info/

113TECHNIQUE 43 Rebasing commits on top of another branch: git rebase
 Sometimes git rebase operations may fail in a way similar to a git merge or git
cherry-pick operation. There may be a merge conflict where changes have been
made to the same parts of the same files that have been modified in rebased commits.
The main difference when resolving a git rebase (or git cherry-pick) conflict is
that, because there’s no merge commit, it has to be done for each commit at a time.

 If the preceding rebase had failed, the output would look something like this.

First, rewinding head to replay your work on top of it...
Applying: Add Chapter 1 inspiration.
Using index info to reconstruct a base tree...
M 01-IntroducingGitInPractice.asciidoc
Falling back to patching base and 3-way merge...
Auto-merging 01-IntroducingGitInPractice.asciidoc
CONFLICT (content): Merge conflict in

01-IntroducingGitInPractice.asciidoc
Failed to merge in the changes.
Patch failed at 0001 Add Chapter 1 inspiration.
The copy of the patch that failed is found in:

/Users/mike/Documents/GitInPracticeRedux/.git/rebase-apply/patch

When you have resolved this problem, run "git rebase --continue".
If you prefer to skip this patch, run "git rebase --skip" instead.
To check out the original branch and stop rebasing, run "git rebase

--abort".

B shows the same first two lines as a successful rebase; the HEAD was rewound, and
Git tried to apply the changes in the commit. The only difference is that, in this
case, the changes couldn’t be merged automatically.

C shows the attempt by rebase to merge the multiple changes that were made to the
same file. This may be successful, but in this case the merge failed, so rebase tells
the user to solve it manually.

D shows the instructions involved in solving the rebase conflict. There are three sug-
gested flags:

 git rebase --continue should be run after the normal merge conflict-
resolution process of manually resolving the conflicts and marking them as
fixed using git add. This continues the rebase operation by rebasing any fur-
ther commits and, if successful, updating the rebased branch.

 git rebase --skip means that, rather than solving the merge conflicts in this
particular commit, the commit is skipped and the next one is applied instead.
This may make sense in certain situations where the functionality of this com-
mit has already been made by another commit on the branch you’re rebasing
on top of, making this commit redundant.

 git rebase --abort gives up on the git rebase process altogether and returns
the branch to its state before the rebase was attempted.

Listing 6.8 Output: rebase conflict

Rebase
beginsB

CMerge conflict

Rebase instructionsD
www.it-ebooks.info

http://www.it-ebooks.info/

114 CHAPTER 6 Rewriting history and disaster recovery

Inspir
com

comm
Technique 44 Rebasing commits interactively:
git rebase - - interactive

You may have thought to yourself that, given the various reset, cherry-pick, and commit
skip options that you’ve seen in this chapter and the last, it would be nice if you could
somehow combine them to alter the history of a branch into the form you’d like before
pushing it elsewhere. Git provides a useful tool for this use case: the --interactive
(or -i) flag for rebase.

 For this example, you want to see how empty commits are handled. Normally
you’d rarely to do this; it’s just to demonstrate how rebase handles them. This can
happen after resolving conflicts so that a commit no longer has any changes. You
might do this manually if you wanted to trigger an event in a system that monitors
your Git repository and triggers events on each new commit, but without having to
change any files. Let’s create an empty commit on the inspiration branch:

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout inspiration.
3 Run git commit --allow-empty --message "Empty commit" to create an empty

commit. The output should resemble the following:

git commit --allow-empty --message "Empty commit"

[inspiration 26596ad] Empty commit

Problem

You wish to interactively rebase the history of a branch.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout inspiration.
3 Run git rebase --interactive v0.1. An editor will appear, and the contents

should resemble the following.

pick dfe2377 Advanced practice technique.
pick a8200e1 Add release preface.
pick 5d4ad83 Add Chapter 1 inspiration.
pick 26596ad Empty commit

Rebase 725c33a..5d4ad83 onto 725c33a
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending

Listing 6.9 Interactive rebase git-rebase-todo file

V0.1 releaseB

ation
mit C

Empty commitD
Rebase rangeE

pick
and F

reword commandG

edit commandH
www.it-ebooks.info

http://www.it-ebooks.info/

115TECHNIQUE 44 Rebasing commits interactively: git rebase --interactive

c

d

s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell
#
These lines can be re-ordered; they are executed from top to bottom.
#
If you remove a line here THAT COMMIT WILL BE LOST.
#
However, if you remove everything, the rebase will be aborted.
#
Note that empty commits are commented out

B shows the last commit on the v0.1-release branch. This appears here because
you’re rebasing back on top of the v0.1 tagged commit, so the rebase operation
tries to rebase any commit ancestors on the inspiration branch that aren’t ances-
tors of the v0.1 tagged commit. It may be undesirable to have these commits
on your new branch; but, as mentioned in the file, if you remove this line from
the file, the commit will be removed from the rebase. This is effectively the same
as if there was a conflict and you used git rebase --skip to skip this commit.
Even more powerfully, if you cut a line from here and perform another git rebase
--interactive operation, as long as the commit still exists (it hasn’t been purged
due to being detached from any branch for 90 days), you can paste it back in, and
rebase will include it in this operation.

C shows the last commit that was made on the inspiration branch. This has the
same commit contents (although a different SHA-1) as the original commit that
you rebased on top of the v0.1-release branch.

D shows a commit with no changes. These are commented out with a # character.
You should never keep empty commits, so rebase is removing them for you
automatically.

E shows the range of commits that are being rebased (725c33a..5d4ad83) and what
commit they’re being rebased onto. In this case, the 725c33a commit is the commit
tagged v0.1.

F is one of several rebase commands that can be selected for each commit in an interac-
tive rebase. The rebase runs through the list of commits from top to bottom and
follows the command for each listed commit (skipping any that have been
removed). The pick command means the commit should be included in the
rebase as is. If this file is saved and closed without modification, every commit is
picked, and the git rebase --interactive operation is identical to what the git
rebase operation would be.

G is a rebase command that, when it reaches that commit and is ready to apply it,
opens a file in an editor, allowing you to customize the commit message. This is
particularly useful when you later realize that a commit message was poor and you
wish to change it before pushing.

squash
ommand

I

fixup
commanJ

Rebase begins1)
www.it-ebooks.info

http://www.it-ebooks.info/

116 CHAPTER 6 Rewriting history and disaster recovery

F

H behaves as if there were a merge conflict. Before the commit is applied, you’re
dropped into a terminal with --continue/--skip/--abort options, and you can
edit the contents of the commit before proceeding. This is useful when you want to
slightly modify a commit, perhaps so a later one can apply more cleanly or to
change the way you solved a problem in a particular commit.

I merges two or more commits into one. If a commit is marked to be squashed, the
preceding commit (or commits if the previous commit was also marked to be
squashed) won’t be applied until the last adjacent squashed commit is reached.
This last commit will then prompt for a commit message (like edit), and the
default commit message will be a combination of all the commit messages for the
commits that have been squashed together. This is useful for combining multiple
commits; perhaps the first commit was missing a file, which was then added in the
second commit. The commits can be squashed, which means when they’re pushed
to the remote repository, no one ever needs to know that a mistake was made when
creating the first commit.

J is very similar to the squash command, but it doesn’t prompt for a message and
instead uses the commit message of the first commit. This is used in situations
where you want to combine commits but don’t need to change commit messages.

1) is different than the previous commands in that it doesn’t operate on a commit.
Instead, the rest of the line after exec is run at that stage in the rebase process. This
can be used to print debugging output while performing a rebase operation.

Edit and save the file so the only uncommented lines are the following.

pick 5d4ad83 Add Chapter 1 inspiration.
p dfe2377 Advanced practice technique.
f a8200e1 Add release preface.
...

The output should resemble the following.

git rebase --interactive v0.1

[detached HEAD 0109344] Advanced practice technique.
2 files changed, 2 insertions(+), 1 deletion(-)

Successfully rebased and updated refs/heads/inspiration.

B shows the new commit that was created by the fixup command. It has the commit
message of the first of the two commits, but it contains the changes from both
commits.

C shows the diffstat for the new commit created by the fixup command.

D shows the successful result of the rebase operation.

Listing 6.10 Rebase reorder and fixup

Listing 6.11 Output: interactive rebase

Fixup commitB

ixup
diff C

Rebase successD
www.it-ebooks.info

http://www.it-ebooks.info/

117TECHNIQUE 45 Pulling a branch and rebasing commits: git pull --rebase
Figure 6.7 shows the state of the inspiration branch after the interactive rebase.
Rather than being how it was before your first git rebase, it now has two commits, the
latter of which was previously the prior, and it contains the contents of two commits.

 You have successfully interactively rebased the inspiration branch on the v0.1
tagged commit. Now push it using git push --set-upstream origin inspiration.

Discussion

Although complex, git rebase --interactive allows for powerful workflows (some
of which are discussed later in this book). I typically always use an interactive rebase
before I push a branch upstream; it allows me to take stock and consider what I want
the history to look like. The factors I consider are whether any commits are now
redundant or only cleaning up previous commits, whether any commit messages can
be improved, whether any commits need to be reordered to make more sense, and
whether any commits need to be removed or moved to other branches. git rebase
--interactive allows me to do this for all my commits in an ordered process, so it
works as a particularly effective review and modification tool.

 Part 3 will cover some workflows, in which git rebase --interactive is a key part.

Technique 45 Pulling a branch and rebasing commits:
git pull - -rebase

Rebasing is often useful when you’re pulling commits into your current branch. You
almost certainly don’t want to create a merge commit just because you’ve made com-
mits on your current branch and want to fetch new commits from upstream. A merge
commit will be created, however, if you’ve committed on this branch and pull in new
commits. Instead of creating a merge conflict, you can use git pull --rebase.

 To test git pull --rebase, let’s create another clone of the same repository, make
a new commit, and git push it. This will let you download new changes with git pull
--rebase on the original remote repository.

 Here are the steps to create another cloned, local repository and push a commit
from it:

1 Change to the directory where you want the new GitInPracticeRedux reposi-
tory to be created: for example, cd /Users/mike/ to create the new local repos-
itory in /Users/mike/GitInPracticeReduxPullTest.

Figure 6.7 Interactively
rebased inspiration branch
www.it-ebooks.info

http://www.it-ebooks.info/

118 CHAPTER 6 Rewriting history and disaster recovery
2 Run git clone https://github.com/GitInPractice/GitInPracticeRedux

.git GitInPracticeReduxPullTest to clone into the GitInPracticeRedux-
PullTest directory.

3 Change directory to the new Git repository: in my case, cd /Users/mike/Git-
InPracticeReduxPullTest/.

4 Modify the 00-Preface.asciidoc file.
5 Run git commit --message 'Preface: Sequel not prequel.'

00-Preface.asciidoc.
6 Run git push.

Now let’s create a commit in your main, local repository:

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout master.
3 Edit 02-AdvancedGitInPractice.asciidoc, and make a change to the file.
4 Run git commit --message="Chapter 2: only one chapter." 02-Advanced-

GitInPractice.asciidoc. The output should resemble the following.

git commit --message="Chapter 2: only one chapter."
02-AdvancedGitInPractice.asciidoc

[master 357d7db] Chapter 2: only one chapter.
1 file changed, 1 insertion(+), 1 deletion(-)

Figure 6.8 shows the state of the master branch before the git pull --rebase opera-
tion. Now let’s perform a pull with a rebase.

Problem

You want to pull commits from origin/master and rebase your current commits in
master on top of the upstream changes.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git pull --rebase. The output should resemble the following.

Listing 6.12 Output: commit to be reset

Figure 6.8 Commit before pull rebase
www.it-ebooks.info

http://www.it-ebooks.info/

119TECHNIQUE 46 Rewriting history on a remote branch: git push --force
git pull --rebase

remote: Counting objects: 3, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 3 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From https://github.com/GitInPractice/GitInPracticeRedux

4455fa9..ae54679 master -> origin/master
First, rewinding head to replay your work on top of it...
Applying: Chapter 2: only one chapter.

Recall that git pull is equivalent to running git fetch && git merge, and git pull
--rebase is equivalent to running git fetch && git rebase.

B shows the output of the fetch operation. This is the same as if you’d run git fetch.

C shows the output of the successful rebase operation. The one commit that had
already been made on your local master branch is rebased on top of the latest
commit in the origin/master remote branch. This is the same as if you had run
git rebase origin/master after git fetch.

Figure 6.9 shows the state of the master branch after the git pull --rebase opera-
tion. You can see that there’s a new commit from origin/master (ae54679) and that
the previous top commit on the local master branch has been rebased on top of this
and has a new SHA-1 (27f2d8b). This works identically if there are multiple commits
that need to be rebased.

You’ve pulled with a rebase. Now git push to send these commits upstream.

Discussion

git pull --rebase is sometimes recommended as a sensible default to use instead of
git pull. You’ll rarely want to create a merge commit on a git pull operation, so
using git pull --rebase guarantees that this won’t happen. This means when you do
push this branch, it will have a simpler, cleaner history. Once you understand how to
rebase and solve conflicts, I recommend using git pull --rebase by default.

Technique 46 Rewriting history on a remote branch: git push - -force
If you modify history on a branch and then try to perform a git push operation, it will
fail. This is to stop you from accidentally writing remote history that other users are
relying on. It’s possible to do this, but you need to be more explicit in your syntax to
indicate that you’re aware you’re performing a dangerous operation.

Listing 6.13 Output: rebase pull

Fetch outputB

Rebase outputC

Figure 6.9 Commit after
pull rebase
www.it-ebooks.info

http://www.it-ebooks.info/

120 CHAPTER 6 Rewriting history and disaster recovery

fa
 Let’s try to rebase the inspiration branch again and push it:

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout inspiration.
3 Run git push to ensure that all the changes are up to date.
4 Run git rebase v0.1-release.
5 Run git push again. The output should resemble the following.

git push

To https://github.com/GitInPractice/GitInPracticeRedux.git
! [rejected] inspiration -> inspiration (non-fast-forward)

error: failed to push some refs to
'https://github.com/GitInPractice/GitInPracticeRedux.git'

hint: Updates were rejected because the tip of your current branch
is behind

hint: its remote counterpart. Integrate the remote changes (e.g.
hint: 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help'

for details.

B shows the local inspiration branch that you attempted to push to the remote
inspiration branch. Unfortunately, this request was rejected because it was a non-
fast-forward—it wouldn’t be advancing the current history but instead rewriting it.

C shows the error message from git push. It fails because the branch you’re pushing
lacks changes from the branches you’re pushing to. This is because it’s not easily
possible for the remote repository to know whether you have commits on that
branch that you need to fetch before pushing or whether you’ve modified the
existing history of a branch.

Instead, let’s learn how to force this push operation to rewrite the history on this
remote branch.

Problem

You wish to rewrite the history on the remote origin/inspiration branch based on
the contents of the local inspiration branch.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout inspiration.
3 Run git pull --rebase.
4 Run git push origin +inspiration again. The output should resemble the

following.

Listing 6.14 Output: rewritten history push failure

CLocal/remote
branches

Push
ilure

B

www.it-ebooks.info

http://www.it-ebooks.info/

121TECHNIQUE 47 Rewriting the entire history of a branch: git filter-branch
git push origin +inspiration

Counting objects: 1, done.
Writing objects: 100% (1/1), 204 bytes | 0 bytes/s, done.
Total 1 (delta 0), reused 0 (delta 0)
To https://github.com/GitInPractice/GitInPracticeRedux.git
+ 0109344...ca74d2b inspiration -> inspiration (forced update)

B shows the git push output as usual but with a (forced update) indicating that it
was forced to allow non-fast-forwards on the remote.

 You’ve rewritten the history on a remote branch.

Discussion

You can also use git push --force instead of specifying the remote branch name pre-
fixed with +, but this is not advised because it’s less safe; depending on your Git config-
uration, you could accidentally force-push multiple branches at once. By default in
some Git versions (which I tell you how to change later in section 7.1.2), a push will
push all branches with matching local and remote branch names, so these will all be
force-pushed if git push --force is run without parameters.

 Remember that the reflog isn’t pushed remotely, so if you unintentionally rewrite
history on the remote branch, there’s no way to recover commits you didn’t have
locally without direct access to the Git repository on the server. For this reason, you
should be careful when rewriting remote branches. A good rule of thumb is to only
ever do it on branches that nobody else is using. Avoid doing it on shared branches,
and never do it on the master branch. Also, do a git pull immediately before any
forced push to try to ensure that you aren’t rewriting commits on the remote branch
that you don’t have locally. Of course, it’s still possible for someone to push a commit
just after you do a git pull, which you overwrite (which is why git push --force is a
dangerous operation).

Technique 47 Rewriting the entire history of a branch:
git filter-branch

There are times when rewriting a few commits isn’t enough; you want to rewrite the
entire history of a branch. Perhaps you accidentally committed confidential files early
in the project that you want to remove, or you want to split a large repository into mul-
tiple smaller ones.

 Git provides a tool called git filter-branch for these cases. It iterates through
the entire history of a branch and lets you rewrite every commit as it does so. This can
be used to rewrite all the commits in an entire repository.

 To avoiding messing up your current local repository, let’s create another cloned,
local repository:

Listing 6.15 Output: rewritten history push

Forced
update

B

www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 6 Rewriting history and disaster recovery

comm

Rem
filen
1 Change to the directory where you want the new GitInPracticeRedux reposi-
tory to be created: for example, cd /Users/mike/ to create the new local repos-
itory in /Users/mike/GitInPracticeReduxFilterTest.

2 Run git clone https://github.com/GitInPractice/
GitInPracticeRedux.git GitInPracticeReduxFilterTest to clone into the
GitInPracticeReduxFilterTest directory.

3 Change directory to the new Git repository: for example,
cd /Users/mike/GitInPracticeReduxFilterTest/.

Figure 6.10 shows the partial output from GitX after the git clone command focusing
on the master branch. Now let’s remove references to the preface file from the master
branch.

Problem

You wish to remove all references to the file 00-Preface.asciidoc on the master branch.

Solution

1 Change to the directory containing your filter test repository: for example,
cd /Users/mike/GitInPracticeReduxFilterTest/.

2 Run git filter-branch --prune-empty --index-filter "git rm --cached
--ignore-unmatch 00-Preface.asciidoc" master. The output should resem-
ble the following.

git filter-branch --prune-empty --index-filter
"git rm --cached --ignore-unmatch 00-Preface.asciidoc" master

Rewrite 4320fad6a58b105b8a1001f4f0da0258aa622feb (13/20)rm
'00-Preface.asciidoc'

Rewrite 725c33ace6cd7b281c2d3b342ca05562d3dc7335 (14/20)rm
'00-Preface.asciidoc'

Rewrite 0a5e3285e46900c7aa819d66e87d0c418a1c2f14 (15/20)rm
'00-Preface.asciidoc'

Listing 6.16 Output: filter-branch file removal

Figure 6.10 GitX before
filter-branch

filter
and B

remove
command

C

Rewritten
commitD

oved
ame E
www.it-ebooks.info

http://www.it-ebooks.info/

123TECHNIQUE 47 Rewriting the entire history of a branch: git filter-branch
Rewrite c18c9ef9adc73cc1da7238ad97ffb50758482e91 (16/20)rm
'00-Preface.asciidoc'

Rewrite 3e3c417e90b5eb3c04962618b238668d1a5dc5ab (17/20)rm
'00-Preface.asciidoc'

Rewrite 4455fa9c237f43e6b08f6190384579aa6ddad5cb (18/20)rm
'00-Preface.asciidoc'

Rewrite ae54679129ba8521265a750fc0e109add45414ac (19/20)rm
'00-Preface.asciidoc'

Rewrite 27f2d8b0a72427caf290e5127ab79533a0bc2867 (20/20)rm
'00-Preface.asciidoc'

Ref 'refs/heads/master' was rewritten

B (git filter-branch) takes the following flags:

 The --prune-empty flag discards any now-empty commits (those that only
changed 00-Preface.asciidoc) because they’re no longer needed.

 The --index-filter flag rewrites the index of each commit, given a command
to run on each commit.

 The master branch argument specifies which branch should be traversed and
rewritten.

C is passed as a string (surrounded by ") and is the command that’s run by git filter-
branch on each commit. Here git rm takes the following flags:

 The --cached flag removes the file from the index. Because this is an index fil-
ter, this is all that’s necessary to remove the file from the commit; it doesn’t have
to be removed from disk (which would be slower).

 The --ignore-unmatch flag specifies that the command should be successful
even if the specified file (00-Preface.asciidoc) doesn’t exist on the current
commit.

D shows the first commit in which the index filter found the specified file (00-Preface
.asciidoc). The newly created commit will have a different SHA-1 than the original
commit listed here (4320fad6a58b105b8a1001f4f0da0258aa622feb).

E shows the filename that was specified to git rm and that has been removed from
this commit.

F shows that the master branch was changed by the git filter-branch operation. If
it wasn’t, instead this would show WARNING: Ref 'refs/heads/master' is

unchanged.

Figure 6.11 shows the output from GitX after the git filter-branch command from
the first point at which they diverge (which is the first commit containing the 00-Preface
.asciidoc file). All commits that referenced the file have been changed, and all those
that only changed this file have been pruned, because they were empty. You can see that
the origin/master remote branch also has an identical ref named refs/original/
refs/heads/master. This is used as a backup so the original master can be restored by
git branch --force master refs/original/refs/heads/master if desired.

Branch rewrittenF
www.it-ebooks.info

http://www.it-ebooks.info/

124 CHAPTER 6 Rewriting history and disaster recovery
You have removed all references to 00-Preface.asciidoc on the master branch.

Discussion

filter-branch is a relatively niche command that is used only in fairly dramatic cir-
cumstances such as killing a project but extracting parts of it into a library, filtering
history before open-sourcing a repository, or removing confidential information that
was accidentally committed over a long period of time. git filter-branch can take
the following arguments:

 --all runs on every branch rather than just the named one. This can be used
to rewrite entire repositories rather than just single branches.

 --force (or -f) performs a second filter-branch on the same branch in a
repository (which overwrites the backup). Otherwise the following message is
output:
Cannot create a new backup.
A previous backup already exists in refs/original/
Force overwriting the backup with -f

 --env-filter lets you change environment variables to change the metadata
for each commit. For example, you could set GIT_AUTHOR_EMAIL for each com-
mit to change the email for every commit or change it conditionally to change
it for a particular author.

 --tree-filter lets you rewrite the contents of the working directory tree. It
checks out every revision and then allows modification of it. The command in
this example could instead be done with a tree filter (git filter-branch
--tree-filter "rm 00-Preface.asciidoc" master), but that would check out
and delete the files from disk every time, which would be slower than the
--index-filter used here.

Figure 6.11 GitX after filter-branch
www.it-ebooks.info

http://www.it-ebooks.info/

125 Summary
 --msg-filter lets you rewrite commit messages. This can be useful in removing
confidential information (or swear words) from commit messages.

 --subdirectory-filter filters the history to those commits that touch a partic-
ular subdirectory. It also makes that subdirectory the new project root. This can
be useful when splitting a large repository into multiple smaller repositories
based on existing subdirectories.

 --parent-filter changes commit parents. --commit-filter can vary commit
commands, and --tag-name-filter modifies tag names, but these tend to be
less widely used.

This book doesn’t seek to cover all these flags in the same detail as this example. The
best approach to learn more about this functionality is to read git filter-branch
--help and experiment on duplicated local repositories.

6.2 Summary
In this chapter you learned the following:

 How to use git reflog to reference logs and see how HEAD and branch pointers
have changed over time

 How to use git reset to reset a branch to point to any other commit
 How to use git rebase to reparent commits, the --interactive flag to rear-

range history on demand, and git pull --rebase to avoid merge conflicts
when pulling changes

 How to use git push origin +branchname to force-push commits and rewrite
history on remote branches

 How to use git filter-branch to rewrite the entire history of one or more
branches

 How to avoid disaster by committing regularly
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part 3

Advanced Git

Part 3 (chapters 7–11) provides some bonus Git skills that will help you be
more efficient. These chapters introduce a collection of techniques that won’t
be used with every Git project but may be important for new ones.

 This part will cover the following topics:

 How to set useful Git configuration settings and aliases
 How to show the current branch in a terminal prompt
 How to use submodules to vendor dependencies for a project
 How to send changes to and receive changes from a Subversion repository
 How to access a GitHub repository using a Subversion client
 How to create and merge GitHub pull requests and forks from the com-

mand line
 How to share a repository as a server or through a web interface
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Personalizing Git
In this chapter, you’ll learn about Git shortcuts. Git is a heavily configurable tool.
As you’ve seen previously in this book, there are often times where you have multi-
ple behaviors or choices for commands that you can select with flags or by using dif-
ferent commands. You may always want to run a command with a lengthy set of
commands, or want to set your preferred difftool or mergetool as a default.
These tweaks can be done per repository or globally, and they allow you to maxi-
mize productivity when adopting a particular Git workflow.

This chapter covers
 Setting the configuration for a single repository, all

of a user’s repositories, or all of a system’s
repositories

 Enabling useful configuration settings

 Aliasing, shortening, and chaining Git commands

 Using Git share configuration files between
machines

 Showing the current branch in a terminal prompt
129

www.it-ebooks.info

http://www.it-ebooks.info/

130 CHAPTER 7 Personalizing Git
Technique 48 Setting the configuration for all repositories
In section 1.2 and technique 35, you saw how to set some configuration options using
git config. You set the user and email address for the initial Git configuration and
enabled git rerere to avoid having to resolve the same conflicts multiple times.

Problem

You wish to set your Git username in your global Git configuration.

Solution

1 You don’t need to change to the directory of a particular or any Git repository.
2 Run git config --global user.name "Mike McQuaid". There will be no output.

This sets the following value in my home directory: /Users/mike/.gitconfig (see the
note “Where is the $HOME directory?”). You can read values from the configuration
file by omitting the value argument. For example:

git config --global user.name

Mike McQuaid

You have set your Git username in your global Git configuration.

Discussion

When you run git config --global user.name "Mike McQuaid", a file named .gitconfig
is created (or modified if it exists) in your $HOME directory.

WHERE IS THE $HOME DIRECTORY? The $HOME directory is often signified
with the tilde (~) character, as it is in the rest of this chapter. If your user-
name is mike, the $HOME directory typically resides in C:\Users\mike on Win-
dows, /Users/mike on OS X, and /home/mike on Linux/Unix.

The filename is prefixed with a dot, and this means on OS X and Linux that it may be
hidden by default in graphical file browsers or file dialogs. If you run cat ~/.gitconfig
in a terminal, you can see the contents. Provided you ran git config as requested in
section 1.2 and technique 35, it should look something like this:

cat ~/.gitconfig

[user]
name = Mike McQuaid
email = mike@mikemcquaid.com

[rerere]
enabled = 1

You can see that these commands create two sections (user and rerere) and three
values (name, email, and enabled). The git config command takes arguments in the
format git config --global section.key value. If you ran this command again with
the same section.key but a different value, it would alter the current value rather
than creating a new line.

Name value

User section
Email key and value
www.it-ebooks.info

http://www.it-ebooks.info/

131TECHNIQUE 49 Setting the configuration for a single repository
 This ~/.gitconfig file is used to set your preferred configuration settings to be
shared among all your repositories on your current machine. You could even share
this file between machines to allow these settings to be used everywhere. This is
detailed later, in section 7.2.

 Options can also be unset by using the unset flag. For example, to unset the git
rerere setting, you would run

git config --global --unset rerere.enabled

Now that you’ve seen how to set and read some configuration settings for all reposito-
ries, let’s see how to do it for a single one.

Technique 49 Setting the configuration for a single repository
There are times when you may want to use different configuration settings for differ-
ent repositories on the same computer. For example, in the past I’ve used one email
address when committing to open source repositories and another email address
when committing to my employer’s repositories. If you wanted to do both of these on
the same computer, you could set a different user.email value in the single repository
configuration file to be used in preference to the global ~/.gitconfig.

 Recall that whenever you’ve used git config previously, you’ve always used the
--global flag. But you can use four different flags to affect the location of the config-
uration file that’s used:

 --global—Uses the ~/.gitconfig file in your $HOME directory. For example, if
your $HOME was /Users/mike, then the global file would be at /Users/mike/
.gitconfig.

 --system—Uses the etc/gitconfig file under wherever Git was installed. For
example, if Git was installed into /usr/local/, the system file would be at /usr/
local/etc/gitconfig; or if installed into /usr/, the system file would be at /etc/
gitconfig.

 --local—Uses the .git/config file in a Git repository. For example, if a Git
repository was at /Users/mike/GitInPracticeRedux/.git, then the local file
would be at /Users/mike/GitInPracticeRedux/.git/config. .git/config is the
default if no other configuration location flags are provided.

 --file (or -f)—Takes another argument to specify a file path to write to. For
example, you could specify a file using git config --file /Users/mike/
Documents/git.cfg.

Problem

You wish to set your Git user email in your repository Git configuration.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.
www.it-ebooks.info

http://www.it-ebooks.info/

132 CHAPTER 7 Personalizing Git
2 Run git config user.email mike.mcquaid@github.com. There will be no
output.

The email address doesn’t need to be surrounded with quotes because it has no
spaces, unlike a name such as "Mike McQuaid".

 This sets the value in the .git/config file in the repository. You can query it as follows:

git config --local user.email

mike.mcquaid@github.com

You have set your Git user email in your repository Git configuration.

Discussion

If you used --global, you’d instead see the value that was set in the global configura-
tion file. If you omit --local and --global, Git uses the same default priority as when
reading configuration settings for its own use. The priority for deciding which config-
uration file to read from is as follows:

1 The argument following --file (if provided)
2 The local configuration file (.git/config)
3 The global configuration file (~/.gitconfig)
4 The system configuration file (etc/gitconfig under where Git was installed)

If a value is set for a key in a higher-priority file, Git’s commands use that instead. This
lets you override the individual configuration among different repositories, users, and
systems.

 Although the global ~/.gitconfig file isn’t created until you set some values, on cre-
ation every repository contains a ~/.git/config file.

cat .git/config

[core]
repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true
ignorecase = true
precomposeunicode = false

[remote "origin"]
url = https://github.com/GitInPractice/GitInPracticeRedux.git
fetch = +refs/heads/*:refs/remotes/origin/*

[branch "master"]
remote = origin
merge = refs/heads/master

[branch "inspiration"]
remote = origin
merge = refs/heads/inspiration

[user]
email = mike.mcquaid@github.com

Listing 7.1 Sample .git/config file

user.email value
www.it-ebooks.info

http://www.it-ebooks.info/

133 Useful configuration settings
You can see that various default options are set based on the current system (such as
ignorecase, because Git has detected that I’m using the default OS X case-insensitive
filesystem) and interactions with the Git repository. When you do a git push
--set-upstream, Git sets values in a branch section in the .git/config file. This section
specifies where to push and pull from when on a certain branch.

7.1 Useful configuration settings
In this section, I’ll show you how to set some of the most useful configuration settings
that make Git easier to use. But Git has a huge number of configuration settings, and
it would take a significant proportion of this book to detail them all. I recommend
reading git config --help at some point and considering which other settings you
may wish to change. Additionally, in appendix C, you can see my personal, com-
mented Git configuration if you’re interested in what I use.

7.1.1 Colored output in Git

Colored output was enabled by default in Git 1.8.4. As a result, if your installed version
of Git is 1.8.4 or above (check by running git --version), you can skip this section.

 Git’s output doesn’t use colors by default on versions below 1.8.4. To enable col-
ored Git output, you can run the following:

git config --global color.ui auto

This means that, if supported by your terminal, and if Git isn’t writing the output of a
command to a file, Git will use colored text in the output. I think colored output
makes Git’s commands much easier to read and parse quickly. The git diff output in
this case uses red for removed lines and green for added ones. This is a much quicker
way of parsing these changes than looking for a + or - symbol (which is included in
the output regardless).

 Note that the red and green colors chosen are set by your terminal rather than Git.
If you wish to change them, you’ll need to change your terminal’s settings (which are
specific to the terminal software you’re using).

7.1.2 Git 2.0’s push defaults

Git 2.0 (which was released on May 28, 2014) defaulted to a new push strategy: the
simple push strategy. This means branches are pushed to their upstream branch (set
the first time with git push --set-upstream). Also, with the simple strategy, Git
refuses to push if the remote branch name is different than the local branch name
unless you specify it with an option such as git push origin remotebranchname.
Because this is the new behavior, it’s a good idea to enable it in older versions of Git. If
your installed version of Git is 2.0 or above (check by running git --version), you
can skip this section.

 Git versions below 2.0 use the matching strategy for their default push behavior.
This means when you run git push without arguments, Git will push all branches that
www.it-ebooks.info

http://www.it-ebooks.info/

134 CHAPTER 7 Personalizing Git
have the same local and remote branch name. For example, if you have master and
inspiration local branches and origin/master and origin/inspiration remote
branches, then when you run git push, any changes made on both master and
inspiration local branches will be pushed to their remote branches. I think this is
confusing; when on a branch, I would expect git push to only affect the branch I’m
on. Let’s switch to the simple strategy instead by running the following:

git config --global push.default simple

I always enable this if I have to use older Git versions, and I highly recommend you do,
too; it means you’re less likely to accidentally push changes made on other branches
that aren’t ready to be pushed yet.

7.1.3 Pruning branches automatically

In Git, if multiple people are using the same repository and someone else deletes a
remote branch, the remote branch reference (such as origin/remote-branch-name)
won’t be deleted from your repository without running the git remote prune com-
mand. This is the same behavior as with tags; Git tries to avoid removing refs that may
be useful to you unless you specifically request it. To prune the origin remote
branches, you would run git remote prune origin.

DOES PRUNING AFFECT LOCAL OR REMOTE BRANCHES? Pruning doesn’t delete
local branches, only references to remote branches. For example, suppose you
had an inspiration branch that you had pushed to origin/inspiration.
Later, someone deleted origin/inspiration. The origin/inspiration
remote branch reference would only be deleted from your local repository
after you ran git remote prune. But both before and after the prune, your local
inspiration branch would remain unchanged.

I find it tedious to run this every time I want to remove a branch, and I would prefer it
happened on every git fetch or git pull operation. To enable this behavior, you can
run the following:

git config --global fetch.prune 1

This means all remote branches will be pruned whenever you fetch or pull from a
remote repository. This is particularly useful when you’re working on a repository
where remote branches are created and deleted very regularly. This can occur in some
workflows where direct commits to the master branch are discouraged, so branches
are created for every change that needs to be made.

7.1.4 Ignoring files across all repositories: global ignore file

You’ve already seen in technique 21 how you can use a .gitignore file to ignore certain
files within a repository. Sometimes you may have problems with this approach; other
users of the repository may disagree about what files should be ignored, or you may be
sick of ignoring the same temporary files your editor generates in every repository you
www.it-ebooks.info

http://www.it-ebooks.info/

135 Useful configuration settings
use. For this reason, Git allows you to set a global ignore file in which you can put your
personal ignore rules (useful if others don’t want them in a repository). To tell Git you
wish to use a ~/.gitignore file, run the following:

git config --global core.excludesfile ~/.gitignore

This global file behaves like any other .gitignore file, but you can put entries in it to be
shared among all repositories. For example, in mine I put .DS_Store, which are the
thumbnail cache files that OS X puts in any directory you view with Finder.app that
contains images (you can see it in appendix C). I also put in it editor-specific files and
build output directory names that I tend to personally prefer. This means I don’t need
to remember to do so for every new repository I use or add an ignore rule to reposito-
ries whenever I change text editors.

7.1.5 Displaying help output in your web browser

You might be someone who keeps their web browser open more than a terminal or
finds documentation easier to read in a browser than a terminal. You can request that
git --help commands display their output in a web browser by appending the --web
flag. For example, to get help for the git help command in the web browser, you run
git help --help --web.

 This may fail with the message fatal: HTML documentation is not provided by this
distribution of git. This is because some Git installations don’t install HTML docu-
mentation. If this is the case, you can find the Git HTML documentation at http://
git-scm.com/docs/ and skip the rest of this section.

 If your Git installation displays the HTML documentation correctly, you can tell git
help and git --help to always display documentation in HTML format by running the
following:

git config --global help.format web

After this, when you run a command like git config --help, instead of displaying in
your terminal, it will open the HTML documentation in your default browser. If you
wish to configure the browser that’s used, you can run git web--browse --help to
view the many different ways of doing so.

7.1.6 Storing passwords in the OS X keychain

Apple’s Mac OS X operating system provides a system-wide secure keychain for each
user. This is what’s used to store your passwords for various services such as network
shares. You can also request that Git store its various passwords there: for example, for
private https:// GitHub repository clones. To do this, run the following:

git config --global credential.helper osxkeychain

After setting this, the next time you clone a private GitHub repository and ask for a
password, you’ll be prompted whether to allow git-credential-osxkeychain access
to your keychain. You should allow this, and then passwords will be stored and
www.it-ebooks.info

http://git-scm.com/docs/
http://git-scm.com/docs/
https:// GitHub
http://www.it-ebooks.info/

136 CHAPTER 7 Personalizing Git
retrieved from here in future. This is useful on OS X, because otherwise Git may
prompt for the same passwords multiple times or write them unencrypted to disk.

 Alternatively, on Windows, there’s a tool named git-credential-winstore (avail-
able at http://gitcredentialstore.codeplex.com) to store these credentials in the
Windows Credential Store. On Linux/Unix, there’s a tool named git-credential-
gnome-keyring (bundled with Git 1.8.0 and above) to store these credentials in the
GNOME Keyring.

7.1.7 Storing arbitrary text in Git configuration

In addition to all the supported keys, you can use any Git configuration file as an arbi-
trary key-value store. For example, if you ran git config --global gitinpractice
.status inprogress, these lines would be added to your ~/.gitconfig file:

git config --global book.gitinpractice.firstedition.status inprogress

[book "gitinpractice.firstedition"]
status = inprogress

These could then be retrieved using git config book.gitinpractice.firstedition
.status. Git silently ignores any configuration values it doesn’t recognize. This allows
you to use the Git configuration file to store other useful data. I use it to store config-
uration data for some personal shell scripts. For example, I store my SourceForge
username in sourceforge.username so scripts unrelated to Git can run git config
sourceforge.username to get the username.

7.1.8 Autocorrecting misspelled commands

If you often mistype commands—such as git pish instead of git push—you could set
up an alias. But it may be time-consuming and clutter up your configuration file to do
this for every variant you mistype. Instead, you can enable Git’s autocorrection feature
by running the following:

git config --global help.autocorrect 1

This waits for the value-specified number of 0.1 seconds (a value of 2 would wait 0.2
seconds) before autocorrecting and running the correct version. You may wish to set
this time to longer if you wish to verify the command before it runs.

 For example, here’s the result if I run git pish after this configuration change:

git pish

WARNING: You called a Git command named 'pish', which does not exist.
Continuing under the assumption that you meant 'push'
in 0.1 seconds automatically...
Everything up-to-date

If the wrong command is going to be run, you can press Ctrl-C to cancel it after the
WARNING text is displayed.
www.it-ebooks.info

http://gitcredentialstore.codeplex.com
http://www.it-ebooks.info/

137TECHNIQUE 50 Aliasing commands
Technique 50 Aliasing commands
One of the most powerful features available with git config is aliasing. Aliases allow
you to create your own Git commands from combinations of other Git commands or
by renaming them. This may be useful for making commands that are more memora-
ble or easier to type. These are set as configuration values in the alias section.

Problem

You wish to create a shorter alias for the ultimate log output from section 4.4.

Solution

1 You don’t need to change to the directory of a particular or any Git repository.
2 Run git config --global alias.ultimate-log "log --graph --oneline

--decorate". There will be no output.

You can verify that this has worked by viewing the relevant section of the ~/.gitconfig
file using grep.

grep --before=1 ultimate ~/.gitconfig

[alias]
ultimate-log = log --graph --oneline --decorate

You’ve created an alias named ultimate-log. Now if you run git ultimate-log, it’s
equivalent to running git log --graph --oneline --decorate. Any arguments that
follow git ultimate-log will be treated the same as arguments following git log
--graph --oneline --decorate.

Discussion

It’s easier to remember ultimate-log than the various flags, but it’s still unwieldy to
type. If you use git ultimate-log all the time, you may want to have fewer characters
to type. Aliases can be any length, so you can make a shorter value using git config
--global alias.l '!git ultimate-log':

git config --global alias.l '!git ultimate-log'
"log --graph --oneline --decorate"

grep --before=1 ultimate ~/.gitconfig

[alias]
ultimate-log = log --graph --oneline --decorate
l = !git ultimate-log

Note the use of single quotes when setting the alias. These are required in this case:
otherwise the Unix shell might not write the !, and you’d see an error like: Expansion
of alias 'l' failed; 'ultimate-log' is not a git command.

Listing 7.2 Output: ultimate log alias

Alias section
Alias value
www.it-ebooks.info

http://www.it-ebooks.info/

138 CHAPTER 7 Personalizing Git
 Now you can use git l to run git ultimate-log, which will in turn run git log
--graph --oneline --decorate. You may wonder why you don’t just set git l to be
the ultimate log directly, rather than passing through another command. I prefer to
do this as a way of making the .gitconfig file easier to read and follow.

 In addition to adding a longer version of the command, you may want to add com-
ments into your Git configuration files. You can do this by manually prefixing any line
with the # or ; character. For example, in my ~/.gitconfig I have the following:

[alias]
'New' Commands
Show the commit log with a prettier, clearer history.
pretty-one-line-log = log --graph --oneline --decorate

Shortened 'New' Commands
l = !git pretty-one-line-log

Using this format of comments, longer commands, and shortened ones helps make
your .gitconfig file easier to follow. When you or someone else looks back on the
changes you made, the comments and more verbose commands make it more obvious
what your reasons were for adding each section.

 In addition to aliasing and shortening commands, you can also use the alias func-
tionality to chain multiple commands together. Any alias that starts with a ! is run as a
command in the root of the repository’s working directory. Let’s create a command
that does a fetch and then an interactive rebase.

 Run git config --global alias.fetch-and-rebase '!git fetch && git rebase
-i origin/master'. This tells Git to go to the root of the working directory (the direc-
tory containing the .git directory), run git fetch, and, if it succeeds, run git rebase
-i origin/master.

 This can be useful in doing something similar to git pull --rebase but doing an
interactive rebase instead. I often use this when I know some changes have been made
upstream and I want to squash and reorder my commits based on these changes. For
example, if I know changes have been made to the origin/master remote branch, this
alias will fetch them and interactive-rebase the current branch on top of the origin/
master remote branch so I can do the various things described in technique 44.

7.2 Sharing your Git (or other) configuration
between machines
Some people use Git on multiple machines. You may use it on both a desktop and a
laptop computer. It’s annoying to have your configuration be different on each
machine, so you may wish to keep your ~/.gitconfig settings in sync so they’re the
same on every machine.

 A common solution is to create a dotfiles repository on GitHub. This involves creat-
ing a Git repository; adding all your Git global configuration files such as ~/.gitconfig
and ~/.gitignore; and committing, pushing, and sharing these files between machines
as you would any other Git repository. This can be good practice for learning how to
www.it-ebooks.info

http://www.it-ebooks.info/

139TECHNIQUE 51 Showing the current branch in your terminal prompt
use Git. You can use dotfiles repositories to share many other application configura-
tion files (such as a .bashrc file to configure the Bash shell).

 You may be interested in my dotfiles repository on GitHub (https://github.com/
mikemcquaid/dotfiles). It contains various configuration files including my .gitconfig
and .gitignore, which are well documented (and included in this book in
appendix C). I’ve also created a simple script named install-dotfiles.sh. After cloning
my dotfiles repository to somewhere in my $HOME directory, I can run install-
dotfiles.sh to symlink or copy all the dotfiles files into their correct locations. This
means I can easily get and install all my dotfiles on any machine that has Git installed.
This is useful because I use the same dotfiles across my multiple computers, virtual
machines, and servers.

 GitHub also provides a dotfiles page with some notable dotfiles repositories and
discussion of why they’re useful at http://dotfiles.github.io.

Technique 51 Showing the current branch in your terminal prompt
As you’ve noticed throughout this book, it’s common to create and change branches
frequently when using Git. When using multiple repositories or not using one for a
while, it may be difficult to remember what branch is currently checked out. You
could run git branch, but if you’re switching regularly among multiple repositories,
it can be handy to have this information displayed in your terminal. Let’s learn how to
do this for two popular shells: Bash and ZSH.

Problem

You wish to add the current Git branch to your Bash or ZSH terminal prompt.

Solution

First, determine what shell you’re using by running basename $SHELL. This should out-
put either bash or zsh. If it outputs something else, you may need to modify the
instructions (which, I’m afraid, is beyond the scope of this book).

 Add the following function to your ~/.bashrc file if you’re using Bash or ~/.zshrc
file if you’re using ZSH:

git_branch() {
GIT_BRANCH=$(git symbolic-ref --short HEAD 2>/dev/null) || return
[-n "$GIT_BRANCH"] && echo "($GIT_BRANCH) "

}

This provides a git_branch function. Once you’ve added it, open a new shell, cd to a
Git repository, and run git_branch. If you’re on the master branch, the output
should be (master).

 This function uses the git symbolic-ref command, which resolves a ref to a
branch. In this case you’re asking for the shortest branch ref for the HEAD pointer—
the currently checked-out branch. This is then output surrounded with brackets.
www.it-ebooks.info

https://github.com/mikemcquaid/dotfiles
https://github.com/mikemcquaid/dotfiles
http://dotfiles.github.io
http://www.it-ebooks.info/

140 CHAPTER 7 Personalizing Git
 Let’s make a prompt of the format hostname (branch) #. If you’re using Bash,
add the following to ~/.bashrc:

PS1='\[\033[01;32m\]\h \033[01;31m\]$(git_branch)\
\[\033[01;34m\]#\[\033[00m\] '

If you’re using ZSH, add the following to ~/.zshrc:

autoload -U colors && colors
PROMPT='%{$fg_bold[green]%}%m %{$fg_bold[red]%}$(git_branch)\
%{$fg_bold[blue]%}# %b%f'

The differences between the two reflect the different ways of setting colors in Bash
and ZSH and the different variables that are used to output the hostname (\h versus
%m) and the colors (\[\033[01;32m\] versus %{$fg_bold[green]%}).

 Be careful to enter them exactly as is, or they may
cause errors. You may wish to enter them into your cur-
rently running terminal to test them before inserting
into your ~/.bashrc or ~/.zshrc. The final version should
look something like figure 7.1.

 You have successfully added the current Git branch to your Bash or ZSH terminal
prompt.

Discussion

This prompt works by running the git symbolic-ref --short HEAD command every
time a new prompt is displayed. In event of an error or no output (no checked out
branch), it won’t display any Git information in the prompt.

7.3 Summary
In this chapter you learned the following:

 How to use git config to set and get values from .git/config, ~/.gitconfig, and
etc/gitconfig

 How to set various useful values from those listed by git config --help
 How to create a git ultimate-log command and shorten it to git l
 How to create a git fetch-and-rebase command that runs git fetch and then

git rebase --interactive
 How to use a dotfiles repository to share configuration files between machines
 How to make a Bash or ZSH terminal prompt use the hostname (branch) #

format

Figure 7.1 Shell branch output
www.it-ebooks.info

http://www.it-ebooks.info/

Vendoring dependencies
as submodules
In this chapter, you’ll learn how to maintain dependencies on other Git-based soft-
ware projects within your own using Git submodules.

8.1 When are submodules useful?
Almost all software projects use other software projects as libraries or tools. For
example, say you’re using Git and writing a desktop application in C++, and you
want to communicate with a server that provides a JSON API. Rather than writing
the JSON-handling code yourself, you find an open source project on GitHub that
provides a library for accessing JSON APIs with C++. You want to include this open
source library into your project and update it when new versions are released with
bug fixes you need.

This chapter covers
 When submodules are useful

 Adding a submodule to a repository

 Viewing the status of the submodules in a repository

 Updating and initializing all submodules in a repository

 Running a command in every submodule in a repository
141

www.it-ebooks.info

http://www.it-ebooks.info/

142 CHAPTER 8 Vendoring dependencies as submodules
 There are generally two approaches to handling other software projects (usually
known as dependencies) and which versions work with your own software:

 Write documentation for what other software projects are required, what ver-
sions they should be, and where they should be installed, so other developers
building the project know how to set it up correctly.

 Include the dependencies in the project’s repository so they’re always available
to anyone when cloning the repository. This is known as vendoring the
dependencies.

Both approaches have pros and cons. Adopting the first means the software source
code repository can avoid including other software projects. In the C++ application
example, it would mean documenting for other developers where and how they
should download the external JSON library’s Git repository rather than storing any-
thing related to it in the C++ application’s Git repository.

 Using the second approach means you always have the various dependencies avail-
able but can increase the space used by the version control system. In the C++ applica-
tion example (without submodules), you might copy the source code of the external
JSON library into the application’s Git repository. When you wanted to update the
library version, you’d copy in the new code and commit it.

 Because Git stores the complete history of a repository and downloads it all when
cloned, too many large dependencies can result in a repository that takes a long time
to clone and is unclear about any other repositories whose source code was used to
populate some of this repository. This makes updating versions of things like external
libraries a painful, manual process. For this reason, submodules were created.

 A Git repository can contain submodules. They allow you to reference other Git
repositories at specific revisions. This technique is most commonly used to reference
external Git repositories that are dependencies for software projects. In the C++ appli-
cation example, instead of documenting the location or copying the source code of
the external JSON library into the application’s Git repository, you could use submod-
ules to reference the external JSON library’s Git repository.

 Git’s submodules store the reference to a specific SHA-1 reference in another
remote Git repository and store these in subdirectories of the current repository. All
that is actually committed in the current repository are some small pieces of metadata
that the git submodule command uses to clone, update, and interact with the various
submodules in a Git repository.

WHAT IS GIT SUBTREE? You may have heard about git subtree, which is an
alternate method of managing Git subprojects in a Git repository. Instead of
just referencing other Git repositories, git subtree stores the contents of the
remote Git repository. It’s a contributed command to Git, which means it’s
not documented or supported to the same extent as git submodule, so I
won’t be covering it in this book. If you want to read more, you can view the
git subtree documentation on GitHub: https://github.com/git/git/blob/
master/contrib/subtree/git-subtree.txt.
www.it-ebooks.info

https://github.com/git/git/blob/master/contrib/subtree/git-subtree.txt
https://github.com/git/git/blob/master/contrib/subtree/git-subtree.txt
http://www.it-ebooks.info/

143TECHNIQUE 52 Adding a git submodule: git submodule add
Technique 52 Adding a git submodule: git submodule add
Let’s start by creating a new repository that can be used as a submodule in the existing
GitInPracticeRedux repository.

 Create a new repository on GitHub that you can use as a submodule by following
these steps:

1 Create a new repository with git init, and pass the path to a new directory: for
example, git init /Users/mike/GitInPracticeReduxSubmodule/.

2 Change to the directory containing your new submodule repository: in this
example, cd /Users/mike/GitInPracticeReduxSubmodule/.

3 Create a file named TODO.md with the echo command by running echo
"# TODO\n1. Add something useful to this submodule." > TODO.md.

4 Commit the new TODO.md file as the initial commit by running git commit
--message "Initial commit of submodule." TODO.md.

5 Create a new repository on GitHub (or another Git hosting provider).
6 Add the new remote reference to the GitHub repository by running

git remote add origin https://github.com/GitInPractice/GitInPractice-
ReduxSubmodule.git.

7 Push the repository to GitHub by running git push --set-upstream origin
master.

The output of all these commands should resemble the following.

git init /Users/mike/GitInPracticeReduxSubmodule/

Initialized empty Git repository in
/Users/mike/GitInPracticeReduxSubmodule/.git/

cd /Users/mike/GitInPracticeReduxSubmodule/

echo "# TODO\n1. Add something useful to this submodule." > TODO.md

git commit --message "Initial commit of submodule."

[master (root-commit) e95b4cd] Initial commit of submodule.
1 file changed, 2 insertions(+)
create mode 100644 TODO.md

git remote add origin
https://github.com/GitInPractice/GitInPracticeReduxSubmodule.git

git push --set-upstream origin master

Counting objects: 3, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 272 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To https://github.com/GitInPractice/GitInPracticeReduxSubmodule.git
* [new branch] master -> master

Branch master set up to track remote branch master from origin.

Listing 8.1 Output: creating a new submodule repository

New repositoryB

Initial commitC

Push
repository

D

www.it-ebooks.info

http://www.it-ebooks.info/

144 CHAPTER 8 Vendoring dependencies as submodules
B shows the creation of a new Git repository on disk to be used as a new submodule
repository for the GitInPracticeRedux repository. It has been created outside the
GitInPracticeRedux directory, so it can be added later as if it were just another
GitHub repository.

C shows the first commit to the new submodule repository of the TODO.md file.

D shows the push of the initial commit to the newly created GitHub repository.

The new submodule repository has been created and pushed to GitHub. Note that it’s
not yet a submodule of the GitInPracticeRedux repository; this was just to create a
new repository that could be added as a submodule repository afterward.

 Now that the submodule repository has been created and pushed to GitHub, it can
be removed from your local machine with rm -rf GitInPracticeReduxSubmodule/.
Don’t worry; a complete copy is stored on GitHub (which you’ll use next).

 Now that you’ve created a new submodule repository, let’s add it as a submodule to
the existing repository.

Problem

You wish to add a the GitInPracticeReduxSubmodule repository as a submodule of
the GitInPracticeRedux repository in the master branch.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git checkout master.
3 Run git submodule add https://github.com/GitInPractice/GitInPractice-

ReduxSubmodule.git submodule.
4 Commit the new submodule changes to the repository by running git commit

--message "Add submodule.".

The output of all these commands should resemble the following.

git submodule add
https://github.com/GitInPractice/GitInPracticeReduxSubmodule.git
submodule

Cloning into 'submodule'...
remote: Counting objects: 3, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 0), reused 3 (delta 0)
Unpacking objects: 100% (3/3), done.
Checking connectivity... done.

git commit --message "Add submodule."

[master cc206b5] Add submodule.
2 files changed, 4 insertions(+)

Listing 8.2 Output: adding a submodule

Submodule cloneB
www.it-ebooks.info

http://www.it-ebooks.info/

145TECHNIQUE 52 Adding a git submodule: git submodule add
create mode 100644 .gitmodules
create mode 160000 submodule

B shows the clone of GitInPracticeReduxSubmodule into the directory named sub-
module in the local repository. After this was done, it also created a .gitmodules file
in the root of the repository’s working directory.

C shows the file that contains the submodule metadata, such as the directory path
and the URL.

D shows the new directory named submodule that was created to store the contents
of the new submodule repository. Note that you normally wouldn’t use this direc-
tory name—you’re just using it for these examples.

You have successfully added the GitInPracticeReduxSubmodule submodule to the
GitInPracticeRedux repository.

Discussion

The new directory named submodule behaves like any other Git repository. If you
change into its directory, you can run services like GitX and git log, and even make
changes and push them to the GitInPracticeReduxSubmodule repository (provided
you have commit access).

 Git uses the .gitmodules file and special metadata for the directory named sub-
module to reference the submodule and the current submodule commit. This
ensures that anyone else cloning this repository can access the same submodules at
the same version after initializing the submodule(s).

 Initializing all submodules can be done by running git submodule init, which
copies all the submodule names and URLs from the .gitmodules file to the local repos-
itory Git configuration file (in .git/config). Note that this was done for you when you
ran git add.

 Let’s take a closer look at the last commit.

git show
commit cc206b5c9b30eef23578e48dadfa3b194a50cfe7
Author: Mike McQuaid <mike@mikemcquaid.com>
Date: Fri Apr 18 16:16:30 2014 +0100

Add submodule.

diff --git a/.gitmodules b/.gitmodules
new file mode 100644
index 0000000..c63f995
--- /dev/null
+++ b/.gitmodules
@@ -0,0 +1,3 @@
+[submodule "submodule"]
+ path = submodule

Listing 8.3 Output: git show submodule

.gitmodules fileC

Submodule directoryD

Submodule nameB

Submodule pathC
www.it-ebooks.info

http://www.it-ebooks.info/

146 CHAPTER 8 Vendoring dependencies as submodules
+ url = https://github.com/GitInPractice/GitInPracticeReduxS...
diff --git a/submodule b/submodule
new file mode 160000
index 0000000..e95b4cd
--- /dev/null
+++ b/submodule
@@ -0,0 +1 @@
+Subproject commit e95b4cd02cafa486a7baec19ab26edec28e9eddc

B shows the name of the submodule that was created in the repository: submodule.
This is used to reference this particular submodule with any additional submodule
commands.

C shows the directory location where the submodule is cloned. This is where the sub-
module files will be accessed.

D shows the remote repository location for the submodule that was added.

E shows the commit SHA-1 for the submodule. Even if there are changes to the sub-
module, this will always be the commit that is checked out by anyone using this
submodule in this repository. This is to ensure that the submodule only uses a
known, tested version and that changes to the submodule’s Git repository (which
may be something you don’t have any control over) don’t change anything in the
current repository.

git submodule add can also take some parameters to affect its behavior:

 --quiet (-q)—Makes git submodule add only print out error messages and no
status information.

 --force (-f)—Lets you add a submodule path that would otherwise be ignored
by .gitignore rules.

 --depth—Passed to the git clone of the submodule to let you create a shallow
clone containing only the requested number of revisions. This can be used to
shrink the size of the submodule on disk. This flag for git clone was men-
tioned previously in technique 8 and can be useful for reducing the clone time
for very large repositories.

Technique 53 Showing the status of submodules:
git submodule status

Now that you’ve added a submodule to the repository, it can be useful to query what
submodules have been added and what their current status is. This can be done with
the git submodule status command.

Problem

You wish to show the current states of all submodules of a repository.

DSubmodule URL

Submodule
commit

E

www.it-ebooks.info

http://www.it-ebooks.info/

147TECHNIQUE 54 Updating and initializing all submodules: git submodule update --init
Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git submodule status. The output should resemble the following.

git submodule status

e95b4cd02cafa486a7baec19ab26edec28e9eddc submodule (heads/master)

B shows the SHA-1 of the pinned submodule, the name, and the ref it’s pointing to
(the master branch in this case). This matches the SHA-1 you saw earlier in the sub-
module directory metadata.

Discussion

git submodule status can take a --recursive flag, which runs git submodule status
in each of the submodules directories too. This is useful because submodules can
themselves contain submodules, and you may wish to query the status of the submod-
ules within the submodules.

Technique 54 Updating and initializing all submodules:
git submodule update - - init

You initialized a submodule (copied the submodule names and URLs in .gitmodules
to .git/config) when you ran git submodule add earlier. But initialization won’t be
done automatically for anyone else with a clone of this repository: they must run git
submodule init.

 Let’s simulate this situation by removing the current clone of the submodule in
this repository:

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git submodule deinit.
3 Run rm -rf .git/modules/ to remove the directory where Git caches submod-

ules outside of the working directory.

The output of all these commands should resemble the following.

git submodule deinit .

Cleared directory 'submodule'
Submodule 'submodule'

(https://github.com/GitInPractice/GitInPracticeReduxSubmodule.git)
unregistered for path 'submodule'

rm -rf .git/modules/

Listing 8.4 Output: submodule status

Listing 8.5 Output: removing a submodule clone

BSubmodule status

Submodule deinitB

Submodule
unregisterCSubmodule deleteD
www.it-ebooks.info

http://www.it-ebooks.info/

148 CHAPTER 8 Vendoring dependencies as submodules
B shows the clearing of the submodule directory. This means the directory named
submodule has all its contents deleted.

C shows that the submodule has been unregistered—this doesn’t remove the sub-
module from the repository but returns it to an uninitialized state.

D shows the deletion of the submodule storage directory. Although the submodule is
cloned into the submodule directory, it’s initially cloned into .git/modules too and
then cloned from there to the submodule directory. Deleting this ensures that
there’s no copy of the submodule’s repository in the current repository.

Sometimes, at the same time as initializing a repository, you may want to update it to
the latest revision to incorporate any changes made in the upstream, submodule
repository. Now that you’ve removed the submodule from your repository, you can ini-
tialize the submodule and update it to any later revision.

Problem

You wish to initialize all submodules in your repository and update them to the latest
revision.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Run git submodule update --init. The output should resemble the following.

git submodule update --init

Submodule 'submodule'
(https://github.com/GitInPractice/GitInPracticeReduxSubmodule.git)
registered for path 'submodule'

Cloning into 'submodule'...
remote: Counting objects: 3, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 0), reused 3 (delta 0)
Unpacking objects: 100% (3/3), done.
Checking connectivity... done.
Submodule path 'submodule': checked out

'e95b4cd02cafa486a7baec19ab26edec28e9eddc'

B shows the registration of the submodule into the Git repository.

C shows the submodule being cloned into the local Git repository.

D shows the submodule contents being checked out into the submodule directory for
the currently stored revision.

Discussion

If there were any changes to the GitInPracticeReduxSubmodule repository, the git
submodule update --init command would initialize the submodule in the local

Listing 8.6 Output: initializing and updating a submodule

Submodule initB

Submodule cloneC

Submodule checkoutD
www.it-ebooks.info

http://www.it-ebooks.info/

149TECHNIQUE 55 Running a command in every submodule: git submodule foreach
repository and then update the stored submodule revision to the latest revision in the
local repository. This would then require another commit and push to update the
remote repository. This should only be done after testing that the changes made to
the GitInPracticeReduxSubmodule repository remain compatible with the GitIn-
PracticeRedux project.

 git submodule update can take some parameters to customize its behavior:

 --recursive—Runs git submodule update --init in each of the submodules
directories. This is useful when there are nested submodules inside submodules.

 --no-fetch—Attempts to update the submodule without running git fetch.
This updates the submodule to a later revision only if it has already been
fetched. This is useful if you want to fetch the changes to a submodule now and
then update and test this update at a later point.

 --force (-f)—Updates the submodules to the latest revision by running the
equivalent of git checkout --force to discard any uncommitted changes made
to the submodules.

 --depth—Passed to the git clone of the submodule to let you create a shallow
clone containing only the requested number of revisions. This can be used to
shrink the size of the submodule on disk.

git clone can also take a --recurse-submodules (or --recursive) flag to automati-
cally run git submodule update --init on any submodules in the repository. Typi-
cally, if you’re cloning a repository you know contains submodules, you’ll use git
clone --recursive-submodules to clone it and all the necessary submodules (and
the submodules of the submodules, if they exist).

Technique 55 Running a command in every submodule:
git submodule foreach

Sometimes you may wish to perform a command or query in every submodule. For
example, you may want to iterate through all the submodules in a repository (and
their submodules) and run a Git command to ensure that they have all checked out
the master branch and have fetched the latest remote repository commits or print sta-
tus information. Git provides the git submodule foreach command for this case: it
takes a command (or commands) as an argument and then iterates through each Git
submodule (and their submodules) and runs the same command.

Problem

You wish to output some status information for every submodule in the GitInPractice-
Redux repository.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.
www.it-ebooks.info

http://www.it-ebooks.info/

150 CHAPTER 8 Vendoring dependencies as submodules
2 Run git submodule foreach 'echo $name: $toplevel/$path [$sha1]'. The
output should resemble the following.

git submodule foreach 'echo $name: $toplevel:$path [$sha1]'

Entering 'submodule'
submodule: /Users/mike/Documents/GitInPracticeRedux:submodule

[e95b4cd02cafa486a7baec19ab26edec28e9eddc]

B shows a message with the name of each submodule that is iterated through.

C shows the use of the git submodule foreach$name, $toplevel, and $path variables
to print out the name of the submodule, the top-level repository it belongs to, and
the path within that repository.

D shows the use of the git submodule foreach$sha1 variable to print the current
SHA-1 of the submodule.

You have successfully iterated through the submodules in the GitInPracticeRedux
repository and used all the git submodule foreach variables to print status information.

Discussion

git submodule foreach can take the following flags:

 --quiet—Only prints command output, not the “Entering submodule” message,
as it runs on each submodule

 --recursive—Iterates through any submodules that exist for any of the
submodules

8.2 Summary
In this chapter you learned the following:

 How to use submodules to vendor project dependencies
 How to use git submodule add to add a submodule and commit its metadata
 How to use git submodule status to view all submodules and their current

revision
 How to use git submodule update --init to initialize all submodules, fetch any

changes, and update them to the latest revision
 How to use git submodule foreach and its variables to run commands and

print metadata for every submodule in a repository

Listing 8.7 Output: submodule loop

Current submoduleB Submodule
name, path

C

Submodule SHA-1D
www.it-ebooks.info

http://www.it-ebooks.info/

Working with Subversion
Despite the growth of Git, Subversion (also known as SVN) remains widely used
across many projects. Many older open source projects continue to use Subversion,
as do many internal corporate projects.

 Fortunately, Git provides functionality to allow you to access existing Subversion
repositories through the git svn command. This also provides a good way of learn-
ing Git if you have to use Subversion repositories, and a good migration path for
projects that currently use Subversion and wish to use Git. In this chapter you’ll
learn about Git’s Subversion integration.

Technique 56 Importing an SVN repository into a Git repository
Let’s start by importing the “Google Search Appliance connector for Lotus Notes”
Subversion repository from Google Code. I selected it because it has a small history
but contains branches and tags so you can see how they’re used.

This chapter covers
 Importing an existing Subversion repository into a Git

repository

 Fetching from and pushing changes to a Subversion
repository for Git

 Accessing a GitHub repository using a Subversion client
151

www.it-ebooks.info

http://www.it-ebooks.info/

152 CHAPTER 9 Working with Subversion

c
comm
HOW CAN YOU INSTALL GIT-SVN? git svn is usually installed as part of the
default Git installation (and is in all the official Git installers). If it hasn’t been
installed, then when you run git svn, you’ll see a message resembling this:
WARNING: You called a Git command named 'svn', which does not exist. In
this case you’ll need to install git-svn separately. You can do so with your
package manager: for example, on Debian/Ubuntu run apt-get install
git-svn.

Problem

You wish to import a Subversion repository into a local Git repository.

Solution

1 Change to the directory where you want the new google-notes repository to
be created: for example, cd /Users/mike/ to create the new local repository in
/Users/mike/GitInPracticeRedux.

2 Run git svn clone --prefix=origin/ --stdlayout http://google-enterprise-
connector-notes.googlecode.com/svn/ google-notes. The output should
resemble the following.

git svn clone --prefix=origin/ --stdlayout

http://google-enterprise-connector-notes.googlecode.com/svn/

google-notes

Initialized empty Git repository in /Users/mike/google-notes/.git/

r1 = ec0d880208029f06e2181ce2241d5f950b77f8c2

(refs/remotes/origin/trunk)

A domino_stylesheet.xslt

r2 = ad41618c83d7dfd2768c8668bfdce0a63ea6cfca

(refs/remotes/origin/trunk)

A google-access-control-1_0.ntf

...

r381 = 750dd5077c4122bcc3a8a17a65088c0ebd85a2b6

(refs/remotes/origin/trunk)

Checked out HEAD:

http://google-enterprise-connector-notes.googlecode.com/svn/trunk

r381

B shows the git svn clone command used to clone the entire Subversion repository.
The --prefix argument is only needed in Git versions before 2.0 (which was
released on May 28, 2014) and means the Subversion remote branches will all be
created under origin/ (like a normal Git remote repository). The --stdlayout
flag is used to say that the Subversion repository is in the usual format—it has

Listing 9.1 Output: cloning a Subversion repository

lone
and B

SVN
repositoryC

Directory nameD

First revisionE

Added fileF

Last revisionG

HEAD positionH
www.it-ebooks.info

http://www.it-ebooks.info/

153TECHNIQUE 56 Importing an SVN repository into a Git repository
branches, tags, and trunk as the subfolders of the root of the repository, and they
should all be imported.

C is the HTTP URL of the Subversion repository you’ve cloned.

D is the name of the local directory that will contain the new Git repository created
from the Subversion repository.

E shows the first commit/revision (r1) of the Subversion repository being mapped
and imported as a new commit/SHA-1 (ec0d88...) into the local Git repository.

F shows a new file added in the first imported commit.

G shows the last commit/revision (r381) of the Subversion repository being mapped
and imported as a new commit/SHA-1 (750dd5...) into the local Git repository.

H shows that the current HEAD pointer position is pointing to the tip of the trunk
remote branch (which is Subversion’s r381).

Note that if you’re using an older version of git, you may see a warning message
resembling the following:

Using higher level of URL:
http://google-...code.com/svn/google-notes =>
http://google-...code.com/svn

W: Ignoring error from SVN, path probably does not exist:
(160013): Filesystem has no item:
Could not resolve path /google-notes for history

W: Do not be alarmed at the above message git-svn is just searching
aggressively for old history.
This may take a while on large repositories

As it states in the output, don’t be alarmed. This is just git svn trying to access a
higher-level directory than you’ve specified and being denied access. It’s not a prob-
lem; this is why the message was removed from later versions.

 You have successfully imported a Subversion repository into a local Git repository.

Discussion

Recall from technique 8 that you use git clone to initially download an entire reposi-
tory. Subversion’s usual equivalent to git clone is svn checkout, which only checks
out the most recent revision. Because you’re importing the Subversion repository into
Git, you need to download all the previous revisions and all the branches and tags.
Each new Git commit has metadata stored in the commit message containing the
mapping between Git and Subversion commits.

 You can see from listing 9.1 that git svn iterates through all the revisions in the
Subversion repository and creates Git commits locally from the changes. This may
take a long time on large repositories, but it only needs to be done once. After git
svn clone has finished, you have a complete local copy of a Subversion repository.

 Let’s see an example of how git-svn formats a commit message.
www.it-ebooks.info

http://www.it-ebooks.info/

154 CHAPTER 9 Working with Subversion

Br

f

git show -s --format=%B master

Log server and database in Lotus Notes errors (b/13059110)

Changes:
...

git svn-id:
http://google-enterprise-connector-notes.googlecode.com/svn/trunk@381
43735464-b96a-11de-8be4-e1425cda3908

B is the full URL for this Subversion commit, including the Subversion branch (trunk)
and revision (@381). The trunk is automatically mapped to the master Git branch.

C is a unique git svn identifier for this Subversion repository. This is used to ensure
that the repository at the URL remains the same and is not replaced with another,
which could cause errors when you try to update.

9.1 Subversion branches and tags
You may have noticed that the clone output sometimes mentions branches. Here’s a
sample that was cut from listing 9.1.

Found merge parent (svn:mergeinfo prop):

ae01454731b1603701c59b78c3a2a2801eb4115f

r378 = 677696fd7befaa4212e760d62ab281780469ea00

(refs/remotes/origin/3.2.x)

M projects/version.properties

r379 = 818430013a86360963676c8ff979cf59b64121ef

(refs/remotes/origin/3.2.x)

Found possible branch point:

http://google-enterprise-...googlecode.com/svn/branches/3.2.x =>

http://google-enterprise-...googlecode.com/svn/tags/3.2.4, 379

Found branch parent: (refs/remotes/origin/tags/3.2.4)

818430013a86360963676c8ff979cf59b64121ef

Following parent with do_switch

Successfully followed parent

B shows that git svn found one of the parent commits of a merge by looking at the
svn:mergeinfo Subversion property on the commit.

C shows the SHA-1 of the found parent commit.

D shows that the found parent commit is for the 3.2.x branch.

E is the (abbreviated) URL for the branch that was used to create the tag commit.

F is the (abbreviated) URL and revision number for the tag commit.

G shows the parent commit that was found for the 3.2.4 tag commit.

H shows the SHA-1 of the found tag commit.

Listing 9.2 Output: Subversion commit message in a Git repository

Listing 9.3 Output: clone branch detection

BSVN URL

UUID C

Merge foundB
Branch parentC

Commit branchD

anch
URL

E
Tag
URL

F

Tag
ound G Tag parentH
www.it-ebooks.info

http://www.it-ebooks.info/

155 Subversion ignore rules
Let’s examine the structure of the Subversion repository by running git branch
--remote to view all the Git remote branches created by git svn.

cd google-notes/

git branch --remote
origin/2.6.x
...
origin/3.2.x
origin/Notes-Connector
origin/dev
origin/tags/1.0.0
origin/tags/2.8.4
origin/tags/2.8.4@273
...
origin/tags/3.2.4
origin/tags/builds
origin/trunk

B shows the stable 3.2 release branch named 3.2.x. This will be used to create more
patch tags in the 3.2 series: for example, 3.2.4.

C is a named branch used for development work named dev.

D shows the branch for the 2.8.4 tag. Note that this has been imported as a branch
and not a native Git tag. (This will be explained later.)

E shows the duplicate 2.8.4 tag named 2.8.4@273. This is the case because it was
revision 273, and the other 2.8.4 is at revision 274.

WHY ARE THERE TAGS IN THE BRANCH OUTPUT? You may have noticed that tags
from git svn aren’t the same as normal Git tags but instead are branches with
a tags/ prefix. This is because in Subversion, the only difference between a
tag and a branch is that of principle. Generally you don’t update tags in Sub-
version, but it’s possible and has happened in this repository. There is a dupli-
cated 2.8.4 tag (named 2.8.4@273) because a commit was made to create the
2.8.4 tag, and another commit was made on it. This wouldn’t be possible in
Git; you’d need to use git tag --force to forcefully update the tag, and then
the previous tag would be lost. This is the reason git svn doesn’t import the
Subversion tags as native Git tags. If you wanted to create native Git tags from
these anyway, you could use git branch --remote --list 'origin/tags/*' to
only show Subversion tags and then create Git tags manually. For example, to
create the 3.2.4 tag, you could run git tag 3.2.4 origin/tags/3.2.4.

9.2 Subversion ignore rules
Recall from technique 21 that .gitignore files contain a list of patterns of paths for Git
to ignore in a repository. Subversion uses the svn:ignore property on directories
instead. These aren’t imported by git svn into a .gitignore file automatically, because
doing so would require adding a file to the repository.

Listing 9.4 Output: remote branches

3.2 branchB

Work branchC

Branch tagD

Duplicate tagE
www.it-ebooks.info

http://www.it-ebooks.info/

156 CHAPTER 9 Working with Subversion
 You can export the svn:ignore property values to a .gitignore file by using the git
svn show-ignore command.

git svn show-ignore

/projects/
/projects/build
/projects/install
/projects/downloads

/projects/notes-client/
...

B shows a .gitignore comment line (comments are prefixed with #) for the projects
directory’s svn:ignore property value.

C shows an ignore rule for the projects directory to ignore a file or directory named
build.

You can use the git svn show-ignore output to write a .gitignore file by running git
svn show-ignore > .gitignore. The > redirects the command output from the termi-
nal into the .gitignore file. You can then add and commit this file to the repository to
share these rules with anyone else using git svn.

 In some cases, you may not want people to know you’re using git svn or not want
to commit a .gitignore file to a Subversion repository. In this case, you could omit the
.gitignore file or not add it to any commits, but this could become irritating when files
aren’t ignored. Instead, you can use .git/info/exclude, as you saw in technique 1,
which operates like a local .gitignore file for a single repository. This file handily also
uses the same syntax as .gitignore. You can write the ignore rules to it by running git
svn show-ignore > .git/info/exclude.

9.3 Updating a Subversion repository
To update a Subversion repository, you need to use the git svn command; you can’t
use git fetch or git pull because git svn hasn’t set up any remote Git repository ref-
erences for you, because it doesn’t use the same transport mechanism. When working
locally, you use git commands as normal.

 Figure 9.1 shows the git svn cycle you’ll look at in this section. As in the local
workflow in section 1.4, files are modified, added, committed, and can be checked
out. But in comparison to technique 6, the remote repository is a Subversion reposi-
tory and so requires different commands.

 The equivalents to git fetch and git pull --rebase for Subversion repositories
are git svn fetch and git svn rebase. There’s no equivalent to git pull without
--rebase. Git and Subversion handle merges differently, so it’s important to avoid
merge commits on updates because they won’t (and shouldn’t) be seen by other users
of the Subversion repository.

Listing 9.5 Ouput: Subversion ignore rules

Directory commentB

Directory ignoreC
www.it-ebooks.info

http://www.it-ebooks.info/

157 Updating a Subversion repository

Re
If you run git svn rebase on the master branch and there are no new commits, the
output will be as follows.

git svn rebase

Current branch master is up to date.

If there was a single new revision (r2), the output might resemble this.

git svn rebase

M README.txt
r2 = 685b522aebec94dc75d725c34c092d9be5f3fc39 (remotes/origin/trunk)
First, rewinding head to replay your work on top of it...
Fast-forwarded master to remotes/origin/trunk.

Listing 9.6 Output: no new Subversion revisions

Listing 9.7 Output: one new Subversion revision

Subversion repository URL
http://google-enterprise-connector-notes.googlecode.com/svn/

Local working directory
/Users/mike/google-notes/

The conversion between Subversion and
Git commits is handled by git svn.

The local workflow is the same as with any
other local Git repository.

git svn dcommit git svn fetch
(or git svn rebase)

Getting new Subversion
commits may require

rebasing any uncommitted
changes.

git commit

git checkout

git add

Commits are rewritten
after being sent to add
Subversion metadata.

Local repository directory
/Users/mike/google-notes/.git/

Local index file
/Users/mike/google-notes/

.git/index

Figure 9.1 Git SVN add/commit/dcommit/rebase/checkout cycle

Modified fileB
New
revision

C
base

begin
D

Fast-forwardE
www.it-ebooks.info

http://www.it-ebooks.info/

158 CHAPTER 9 Working with Subversion
B shows that a file named README.txt was modified in the new revision.

C shows the new revision number (r2) and the new commit SHA-1 (685b52...).

D shows the beginning of the git rebase operation that git svn rebase is running
to rebase any commits made on this branch on top of the newly received commits.

E shows that this git rebase was a fast-forward of the HEAD pointer to the latest new
commit, because there were no local commits that needed to be rebased.

9.4 Subversion authors and committers
Let’s look at the metadata of a commit imported from a Subversion repository.

git show -s --format=short master

commit 750dd5077c4122bcc3a8a17a65088c0ebd85a2b6
Author: tdnguyen@google.com
<tdnguyen@google.com@43735464-b96a-11de-8be4-e1425cda3908>

Log server and database in Lotus Notes errors (b/13059110)

B shows an email address instead of the author name. This is the username of the
user in the Subversion repository (which happens to be an email address in this
case).

C shows the author email address. In git-svn, this is created from the username by
appending to the username @ followed by the UUID for the Subversion repository.

It’s possible to use a Subversion authors mapping file by passing the --author-file
(or -A) flag to git svn clone when you first clone a Subversion repository. The
authors file has the following syntax:

mikemcquaid = Mike McQuaid <mike@mikemcquaid.com>

If passed a valid file with this format, when git svn reads a new revision, it looks up
the username in this file. If the username is mikemcquaid, it replaces the author (or
committer) name and email address with those specified in the file. If it can’t find an
entry in the file, it stops the clone (or rebase), and you must add the new author’s
details to the file.

9.5 Viewing a Subversion repository in GitX
git svn creates a Git repository from a Subversion repository, so you can still use all
the graphical tools you’re used to. GitX also provides an additional Git SVN Revision
column to display the Subversion revision number (see figure 9.2).

9.6 Migrating a Subversion repository to Git
With what you’ve already learned in this section (cloning a Subversion repository, cre-
ating real Git tags, and mapping authors), you can create a Git repository that con-

Listing 9.8 Subversion commit metadata in a Git repository

Author
name

B

Author
emailC
www.it-ebooks.info

http://www.it-ebooks.info/

159TECHNIQUE 57 Committing and pushing to an SVN repository from a Git repository
tains all the information from a Subversion repository in the typical Git format. This
may be useful if you want to migrate a project from Subversion to Git; you can import
the entire history, migrate the tags, and git push it to a new repository. If you want to
remove all references to the original Subversion repository, you can use git filter-
branch (introduced in technique 47) to remove all the git-svn Subversion references
from commit messages or otherwise reformat them.

Technique 57 Committing and pushing to an SVN repository
from a Git repository

Remember that svn commit does the equivalent of a git commit and a git push to the
remote server. The repository created by git svn is a normal Git repository, so you can
change files and commit as you might do with any other Git repository. The only dif-
ferences are when you want to push your changes to the Subversion repository, and if
you want to interact with remote branches.

 To push all the unpushed commits on the current branch to a Subversion reposi-
tory, you use the git svn dcommit command.

Problem

You wish to commit and push changes to a Subversion repository.

Solution

1 Change directory to a Git SVN repository: for example,
cd /Users/mike/GitSVN/.

2 Make some changes to a file such as README.txt file, and commit them:
git commit --message "README.txt: improve grammar." README.txt.

3 Run git svn dcommit.

The output from these commands should resemble the following.

git commit --message "README.txt: improve grammar." README.txt

[master bcd0a70] README.txt: improve grammar.
1 file changed, 1 insertion(+), 1 deletion(-)

git svn dcommit

Listing 9.9 Output: Subversion push

Figure 9.2 GitX on import Subversion repository

New commitB
www.it-ebooks.info

http://www.it-ebooks.info/

160 CHAPTER 9 Working with Subversion

Com
Committing to http://svntest.com/svntest/ ...
M README.txt

Committed r3
M README.txt

r3 = da4cc700b6d5fe07ead532a34195b438680e7a71 (remotes/origin/trunk)
No changes between bcd0a70923a9b53cd98ccaeee1567ca95bb579c0 and

remotes/origin/trunk
Resetting to the latest remotes/origin/trunk

B shows the commit subject and SHA-1 of the new commit.

C shows that the new Subversion revision was committed successfully.

D shows the new commit created from the new Subversion revision. Recall that com-
mits contain their revision numbers and repository UUIDs, which requires rewrit-
ing the commit message. Also recall that rewriting the commit message changes
the SHA-1 of a commit. As a result, this new commit SHA-1 doesn’t match the SHA-1
in B, although the actual changes are the same.

E shows git svn checking that there are no differences between the commit that was
just created and the commit the Subversion repository returned.

F shows that the HEAD and master branch pointers are being updated to the new
commit. The old commit is still accessible from before it was rewritten and the new
commit was created with the Subversion metadata.

You have successfully committed and pushed changes to a Subversion repository.

Discussion

You can see that git svn dcommit also has to do some rewriting of commits, similar to
git svn rebase. This is because the commit messages store additional metadata that
can only be obtained from the Subversion server. The Subversion server may have had
additional commits in the meantime, which means the revision number may differ
from the last one seen. If this has happened, a rebase may need to be done by git svn
dcommit after receiving the new commit from the server.

9.7 Local branching and tagging
Subversion doesn’t have the concept of local branches or tags. If a branch or tag
needs to be created in Subversion, the Subversion client has to speak to the server.

 Because you have a local Git repository containing the contents of the Subversion
repository, you’re not bound by the same constraints. You can create local branches
and tags and use them as you wish, and everything is fairly simple unless you want to
send commits to or receive commits from the Subversion server.

 Recall that both git svn rebase and git svn dcommit perform rebasing opera-
tions on updates. As a result, it becomes difficult to correctly handle merges between
Subversion branches with git svn. You can read how to do this in git svn --help
using the --mergeinfo flag, but I won’t cover it in this book.

Push successC
New
revision

D

mit
diff E

Trunk resetF
www.it-ebooks.info

http://www.it-ebooks.info/

161TECHNIQUE 58 Accessing a GitHub repository with Subversion
HOW SHOULD YOU COLLABORATE WHEN USING GIT SVN? I advise you to use local
branches only for your own work, and not for collaboration with others.
When you’re finished with a local branch and wish to merge it, you should
rebase the contents into the branch you wish to include it in. This means oth-
ers won’t see your merge commits, but you can still use the cheap local
branches and history rewriting in Git. If you want to interact with Subversion
remote branches or tags, you should instead use the git svn branch and git
svn tag commands. These are copies of Subversion’s svn branch and svn tag
commands and take the same parameters and use the same syntax.

Technique 58 Accessing a GitHub repository with Subversion
So far, this chapter has been concerned with accessing Subversion repositories using
Git. This assumes a development team that is mostly using Subversion, and a few users
or single user using Git. Incidentally, this is how I learned Git originally; I worked on
Subversion projects but used Git locally.

 What if the situation were reversed, and the majority of people on the project
wanted to use Git and a minority wanted to use Subversion? This is made better if you
host your Git repository on GitHub, because GitHub provides a Subversion interface
for every Git repository. Let’s check out the GitInPracticeRedux repository from ear-
lier chapters using svn checkout.

Problem

You wish to check out the GitInPracticeRedux repository from earlier chapters using
Subversion.

Solution

1 Change to the directory where you want the new GitInPracticeReduxSVN
repository to be created: for example, cd /Users/mike/ to create the new local
repository in /Users/mike/GitInPracticeReduxSVN.

2 Run svn co https://github.com/GitInPractice/GitInPracticeRedux

GitInPracticeReduxSVN. The output should resemble the following.

svn co https://github.com/GitInPractice/GitInPracticeRedux

A GitInPracticeRedux/branches
A GitInPracticeRedux/branches/inspiration
A GitInPracticeRedux/branches/inspiration/.gitignore
A GitInPracticeRedux/branches/inspiration/00-Preface.asciidoc
...
A GitInPracticeRedux/branches/v0.1-release/00-Preface.asciidoc
...
A GitInPracticeRedux/tags/v0.1/00-Preface.asciidoc
...
A GitInPracticeRedux/trunk/00-Preface.asciidoc
A GitInPracticeRedux/trunk/01-IntroducingGitInPractice.asciidoc

Listing 9.10 Partial output: checking out a GitHub repository with Subversion

Inspiration
branch

B

v0.1-
release
branchC

v0.1
tag

D

TrunkE
www.it-ebooks.info

http://www.it-ebooks.info/

162 CHAPTER 9 Working with Subversion
A GitInPracticeRedux/trunk/02-AdvancedGitInPractice.asciidoc
Checked out revision 26.

B shows the 00-Preface.asciidoc file in the inspiration branch.

C shows the 00-Preface.asciidoc file in the v0.1-release branch.

D shows the 00-Preface.asciidoc file in the v0.1 tag.

E shows the 00-Preface.asciidoc file in trunk (which is actually the renamed master
branch).

F shows the latest revision number for the repository (r26).

You have checked out the GitInPracticeRedux repository using Subversion.

Discussion

As you can see, the Git repository has been transformed into the traditional Subver-
sion layout with trunk, branches, and tags folders in the root. Typically you’d use svn
co https://github.com/GitInPractice/GitInPracticeRedux/trunk instead and
switch to the current branch of choice using svn switch.

 You can use svn commit, svn branch, and any other Subversion commands with
this repository. They’re mapped on the GitHub servers into the corresponding Git
commands.

 You can read more about GitHub Subversion integration at https://help
.github.com/articles/support-for-subversion-clients. The current implementation-
specific details are beyond the scope of this book and not necessary for typical use.

 If you’re already using or considering GitHub, I’d strongly recommend using the
GitHub repository through Subversion rather than a Subversion repository through
git-svn. This is because Subversion’s functionality is effectively a subset of Git’s func-
tionality, so using GitHub’s Subversion support won’t limit Git users as much (if at all)
compared to Git users using git svn. For example, you can happily merge branches
using Git and push them when using GitHub’s Subversion integration, whereas when
using git-svn, as mentioned in technique 57, you should do branch merges using
Subversion’s tools instead.

 If you’re not using GitHub, there are tools such as SubGit (http://subgit.com)
that are beyond the scope of this book but may enable you to work in teams with some
users using Git and others using Subversion.

9.8 Summary
In this chapter, you learned the following:

 How to use git svn clone to import an existing Subversion repository
 How to use git svn rebase to fetch from, and git svn dcommit to push to, an

existing Subversion repository
 How to use svn checkout to check out GitHub repositories using Subversion

Latest revisionF
www.it-ebooks.info

https://help.github.com/articles/support-for-subversion-clients
https://help.github.com/articles/support-for-subversion-clients
http://subgit.com
http://www.it-ebooks.info/

GitHub pull requests
GitHub provides more than just Git hosting that you can git push to and git fetch
from; it also provides features that allow teams of individuals to collaborate on soft-
ware projects in ways beyond those provided by Git itself. Two of these features are
pull requests and forks. In this chapter you’ll learn about GitHub’s pull requests.

10.1 What are pull requests and forks?
One of the core components of most software project collaboration is some sort of
issue (or bug) tracker, such as JIRA, FogBugz, Pivotal Tracker, or Trac. GitHub pro-
vides an issue tracker for every repository known as Issues. In GitHub’s Issues, there
are subject and body fields, an open or closed state, labels, and comments.

 There is a special type of issue known as a pull request (PR). This is an issue on a
project with an attached branch of code changes. Pull requests are used to request

This chapter covers
 Making pull requests from branches on the same

repository

 Making pull requests from branches on a forked
repository

 Interacting with forks and pull requests from the
command line

 Merging a pull request from a forked repository
163

www.it-ebooks.info

http://www.it-ebooks.info/

164 CHAPTER 10 GitHub pull requests
that someone with commit access to the repository merge the code changes from the
pull-request branch into their the main repository. Once a PR has been received, you
can view the changes that have been requested, and anyone who can view the PR can
make comments either inline on the commit or generally on the PR. If there are com-
ments that require changes to be made, they can be committed and pushed to the
pull-request branch, and the pull request is updated with these changes. Once the
PR’s changes have reached an acceptable standard to be included in the repository,
you can use the Merge button on the GitHub website to merge the requested branch
into the repository.

 Let’s say you’re creating a new web application and want the master branch to be
merged regularly to the web server. You want to ensure that any branches merged into
the master branch are always checked by at least one other developer before they’re
merged (to be sure nobody accidentally deploys bad code to the server). To do this,
you can request that anyone using the project create a pull request rather than merg-
ing directly to master and that they receive an OK from at least one other developer
before merging to master. If the changes aren’t yet OK, then someone can add more
commits to the pull request, and it will be merged when it has been OK’d. Adopting
this approach will result in higher-quality code being merged to master and fewer silly
mistakes, because any new changes will be checked by at least one person other than
the original author.

 Recall from technique 8 that you use git clone to initially download an entire
repository. A fork is similar to a clone, but rather than download the repository to your
local machine, it creates a clone of a repository on GitHub’s servers. This allows you to
make any changes you wish to your fork even if you don’t have commit access to the
original repository. Anyone with read access to a repository can fork it.

 PRs and forks can be combined, so you can find a repository you wish to make
changes to, fork it, and make changes in your local fork. You can then create a PR to
request the changes on the branch in your fork be merged into the original repository.

 Let’s return to the web application example. Let’s say you have an open source
library that your web application depends on, and you’ve found a bug in it. You want
to fix this bug and share it with the open source library maintainers so that they can
provide the fix to everyone. But you’ve never worked on this project before, and the
maintainers don’t know or trust you yet—thus they’re unlikely to give you commit
access to the project so you can fix the bug. Instead, you can fork the repository, make
the changes, commit and test them, and then create a pull request from your forked
repository to the original repository. This allows the maintainers of the project to
review your proposed changes, make any comments, and merge them when they’re
ready. This provides a code-review workflow similar to that when using pull requests
without forks, but it means anyone can suggest changes without having the ability to
merge them.

 You can read more about using pull requests and forking repositories in GitHub’s
official help pages at https://help.github.com/articles/using-pull-requests and
www.it-ebooks.info

https://help.github.com/articles/using-pull-requests
http://www.it-ebooks.info/

165TECHNIQUE 59 Making a pull request in the same repository: gh pull-request
https://help.github.com/articles/fork-a-repo. I don’t go into more detail here,
because these pages are kept up to date with any changes made to GitHub.

10.2 Interacting with GitHub from the command-line: gh
You’ve been working mostly from the command line in this book, and PRs are some-
times a core part of Git workflows, so it would be useful if you could also create PRs
from the command line. Fortunately, a tool called gh lets you interact with GitHub
from the command line (through the GitHub API). It’s available for download and
provides installation instructions at https://github.com/jingweno/gh.

 The gh command-line tool allows various interactions with GitHub by providing a
wrapper on top of Git’s interface and adding new commands and improving the inter-
action of some Git commands with GitHub. For example, instead of running git
clone https://github.com/GitInPractice/GitInPracticeRedux, you can run gh
clone GitInPractice/GitInPracticeRedux to perform the same action of cloning a
GitHub repository to your local machine.

 The gh tool can also be used to create PRs from the command line. Although this
accomplishes the same end result as the web interface and is slightly less flexible, I
generally prefer it, because it fits better into the command-line-driven workflow of
using the Git to interact with a project’s repository.

Technique 59 Making a pull request in the same repository:
gh pull-request

In my experience, most teams that work on private repositories tend to use a single
repository rather than many different forks. Pull requests can still be used on a private
repository; even although everyone with read access also has commit access, PRs are
still useful for performing code review before changes are merged into a repository.

 To create a PR, you need to create a local branch of the changes you want to be
merged into another branch (master, by default), push the local branch to a remote
branch, and use gh to create a pull request.

Problem

You wish to create a GitHub pull request from the command line.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Create a new branch from the master branch by running a command like git
checkout -b pr-test master.

3 Make some changes to a file—for example, 00-Preface.asciidoc—and commit
them by running git commit 00-Preface.asciidoc. Ensure that there are mul-
tiple lines in the commit message: a commit subject and commit body.
www.it-ebooks.info

https://help.github.com/articles/fork-a-repo
https://github.com/jingweno/gh
http://www.it-ebooks.info/

166 CHAPTER 10 GitHub pull requests
4 Push the local branch to a remote branch by running git push --set-upstream
origin pr-test.

5 Create a pull request by running gh pull-request, and accept the default pull
request message (which should match the commit message).

The output for these commands should resemble the following.

git checkout -b pr-test master

Switched to a new branch 'pr-test'

git commit 00-Preface.asciidoc

[pr-test 071d468] Preface: use Praxis instead of Paris.
1 file changed, 1 insertion(+), 2 deletions(-)

git push --set-upstream origin pr-test

Counting objects: 10, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 348 bytes | 0 bytes/s, done.
Total 3 (delta 2), reused 0 (delta 0)
To https://github.com/GitInPractice/GitInPracticeRedux
* [new branch] pr-test -> pr-test

Branch pr-test set up to track remote branch pr-test from origin.

gh pull-request

https://github.com/GitInPractice/GitInPracticeRedux/pull/1

B shows the creation of the new local branch. This is used to commit the changes for
the new pull request.

C shows the new commit on the pr-test branch. It was created with a commit mes-
sage subject and body.

D shows the new remote branch that was created to be used for the new pull request.

E shows the URL for the new pull request created by the gh tool using the GitHub
API. It requests the merge of the pr-test branch into the remote repository’s
master branch.

You have created a new pull request from the command line using the gh tool.

Discussion

HOW DO YOU USE BRANCHES WITH PULL REQUESTS? Each pull request you cre-
ate should use a new, non-master branch. Because each pull request tracks the
status (and any new commits) for a particular remote branch, you need to
ensure that each branch is used for a separate pull request to avoid situations
like adding a new commit to one pull request and having it show up in
another. You should also avoid creating pull requests from the master branch,
because this is generally the branch you will want to merge to. Additionally,

Listing 10.1 Output: creating a pull request with gh

Local branchB

New commitC

Remote
branch

D

Pull requestE
www.it-ebooks.info

http://www.it-ebooks.info/

167TECHNIQUE 59 Making a pull request in the same repository: gh pull-request
GitHub sometimes doesn’t update the master branch if you push new com-
mits to it after creating the pull request, so you’d need to create a new pull
request for every change that needs to be made. This is less than ideal, because
you lose all the existing context and comments.

Now that a pull request has been created, you can view it in the GitHub web interface.
Figure 10.1 shows the new pull request created on GitHub. gh defaulted the pull-
request message to that of the single commit in this pull request. You can see that the
commit message subject was used for the title of the pull request and the commit mes-
sage body was used as the initial comment. Additionally, the master branch was used
as the base branch, which is the branch into which the PR requests the changes be
merged. The changes that should be merged in are those from the pr-test branch,
which is known as the head branch.

 Essentially, the pull request has created a remote branch named pr-test. You’ve
requested that someone merge it into the master branch and discuss any changes that
need to be made.

 The gh tool also accepts the -b and -h parameters, which can be followed with a
branch name to change the base and head branches, respectively. These can be
passed either a branch name such as pr-test; a branch name and GitHub user/orga-
nization name such as GitInPractice:pr-test; or a GitHub user/organization
name, repository name, and branch name, as in GitInPractice/GitInPractice-
Redux:pr-test.

Figure 10.1 New pull request
www.it-ebooks.info

http://www.it-ebooks.info/

168 CHAPTER 10 GitHub pull requests
HOW CAN YOU VIEW A PULL REQUEST WITHOUT WHITESPACE CHANGES? The Files
Changed pane on a pull request shows a diff of the changes in that
pull request. Some lines may have changes to whitespace that you don’t
care about. In this case, you can avoid them by appending ?w=1 to the
Files Changed URL: for example, https://github.com/GitInPractice/
GitInPracticeRedux/pull/1/files?w=1.

Technique 60 Making a pull request from a forked repository: gh fork
If you want to commit to an open source software project that you don’t have commit
access to, you’ll want to create a pull request so others can review your changes before
they’re merged (because open source doesn’t mean letting anyone commit to any
repository at any time). To do this, you create your own repository to which you can
make commits and push branches, and from which you can request pull requests. As
you may recall from section 10.1, you can fork any repository you have read access to
(which includes all public, open source repositories).

Problem

You wish to fork a repository and create a pull request from that fork from the com-
mand line.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Create a new fork by running gh fork.
3 Create a new branch from the master branch by running a command like git

checkout -b credits master.
4 Make some changes to a file—for example, 01-IntroducingGitInPractice.ascii-

doc—and commit them by running git commit 01-IntroducingGitIn-

Practice.asciidoc. Ensure that there are multiple lines in the commit
message: a commit subject and commit body.

5 Push the local branch to a remote branch by running, for example, git push
--set-upstream origin pr-test.

6 Create a pull request by running gh pull-request, and accept the default pull-
request message (which should match the commit message).

The output for these commands should resemble the following.

gh fork

remote: Counting objects: 3, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 3 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.

Listing 10.2 Output: creating a fork and a pull request with gh
www.it-ebooks.info

https://github.com/GitInPractice/GitInPracticeRedux/pull/1/files?w=1
https://github.com/GitInPractice/GitInPracticeRedux/pull/1/files?w=1
http://www.it-ebooks.info/

169TECHNIQUE 61 Merging a pull request from the same repository
From https://github.com/mikemcquaid/GitInPracticeRedux
* [new branch] inspiration -> mikemcquaid/inspiration
* [new branch] master -> mikemcquaid/master
* [new branch] pr-test -> mikemcquaid/pr-test
* [new branch] v0.1-release -> mikemcquaid/v0.1-release

new remote: mikemcquaid

git checkout -b credits

Switched to a new branch 'credits'

git commit 01-IntroducingGitInPractice.asciidoc

[credits e9d27c7] Chapter 1: attribute quote.
1 file changed, 2 insertions(+), 2 deletions(-)

git push --set-upstream origin credits

Counting objects: 10, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 348 bytes | 0 bytes/s, done.
Total 3 (delta 2), reused 0 (delta 0)
To https://github.com/mikemcquaid/GitInPracticeRedux
* [new branch] credits -> credits

Branch credits set up to track remote branch credits from origin.

gh pull-request

https://github.com/GitInPractice/GitInPracticeRedux/pull/2

B shows that the repository was forked on GitHub, and a new remote repository was
added with the username of the fork (mikemcquaid in this case) and then fetched.

C shows the creation of the new local branch.

D shows the new commit on the credits branch.

E shows the new remote branch that was created.

F shows the URL for the new pull request. It’s requesting the merge of the credits
branch from the https://github.com/mikemcquaid/GitInPracticeRedux forked
repository into the master branch of the https://github.com/GitInPractice/GitIn-
PracticeRedux main repository.

You have created a fork and a pull request from it from the command line.

Technique 61 Merging a pull request from the same repository
Merging a pull request from a non-forked repository is easy. You can either click the
Merge Pull Request button (as shown in figure 10.1) or merge the branch as you
would any other. Note that the Merge Pull Request button always performs a non-fast-
forward merge (it always produces a merge commit), so let’s do that here too.

Problem

You wish to merge a pull request from the command line.

Repository forkB

Local branchC

New commitD

Remote
branch

E

Pull requestF
www.it-ebooks.info

https://github.com/mikemcquaid/GitInPracticeRedux
https://github.com/GitInPractice/GitInPracticeRedux
https://github.com/GitInPractice/GitInPracticeRedux
http://www.it-ebooks.info/

170 CHAPTER 10 GitHub pull requests
Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Check out the master branch by running git checkout master.
3 Ensure that all the remote branches are up to date by running git fetch.
4 Merge the remote pr-test branch into the master branch by running git

merge --no-ff origin/pr-test.
5 Push the updated master branch with git push.
6 Delete the now-merged pr-test branch by running git push --delete origin

pr-test.

The output for these commands should resemble the following.

git checkout master

Switched to branch 'master'
Your branch is up-to-date with 'origin/master'.

git fetch

git merge --no-ff origin/pr-test

Merge made by the 'recursive' strategy.
00-Preface.asciidoc | 3 +--
1 file changed, 1 insertion(+), 2 deletions(-)

git push

Counting objects: 1, done.
Writing objects: 100% (1/1), 241 bytes | 0 bytes/s, done.
Total 1 (delta 0), reused 0 (delta 0)
To https://github.com/GitInPractice/GitInPracticeRedux.git

cc206b5..7a19d89 master -> master

git push --delete origin pr-test
To https://github.com/GitInPractice/GitInPracticeRedux.git
- [deleted] pr-test

B shows the checkout of the master branch. This is required, because to merge into
the master branch, you first need to have the master branch checked out.

C shows the new merge commit created by the non-fast-forward commit. Remember,
this was run with --no-ff to guarantee creating a merge commit (which matches
the behavior of the Merge Pull Request button).

D shows the new merged commits being pushed to the remote master branch.

E shows the deletion of the now merged (and therefore unneeded) pr-test branch.

You have successfully merged a pull request from the command line.

Listing 10.3 Output: merging a pull request

Branch checkoutB

Merge commitC

Branch pushD

Branch deleteE
www.it-ebooks.info

http://www.it-ebooks.info/

171TECHNIQUE 61 Merging a pull request from the same repository
Discussion

Let’s look at the pull request on GitHub. Figure 10.2 shows the state of the merged
pull request after these changes. You’ll notice that after the push, the pull request is
automatically closed, because it has detected that you’ve merged the contents of the
branch remotely.

HOW CAN YOU CLOSE A PULL REQUEST WITHOUT A MERGE OR ISSUE FROM A
COMMIT? If you prefer to cherry-pick or rewrite some of the commits, the
SHA-1 may change. This may not be detected automatically by GitHub as a
merge, and therefore the issue may not be closed automatically. If you wish to
ensure that any modified commit automatically closes the pull request, you
can use git rebase --interactive or git commit --amend to change the
commit message for one of the commits to include text such as Closes #1.
The first pull request that was created in the example was numbered #1. This
magic string in a commit message is detected by GitHub and indicates that
when this commit is merged to the master branch on the main repository, it
should close the pull request or issue numbered #1. You can read more about
this in GitHub’s help at https://help.github.com/articles/closing-issues-via-
commit-messages.

Figure 10.2 Merged pull request
www.it-ebooks.info

https://help.github.com/articles/closing-issues-via-commit-messages
https://help.github.com/articles/closing-issues-via-commit-messages
http://www.it-ebooks.info/

172 CHAPTER 10 GitHub pull requests
Technique 62 Merging a pull request from a forked repository:
gh merge

Merging a pull request from a forked repository is more involved. You can click the
Merge Pull Request button, but what if you want to merge the branch from the com-
mand line? You could manually add the forked repository as a remote repository and
merge it like before. Instead, though, let’s use the handy gh tool again to make things
a bit easier.

 To simulate the typical open source maintainer approach where new forks aren’t
already added as remote repositories, let’s start by removing the fork’s remote from
the local Git repository by running git remote rm mikemcquaid (which won’t produce
any output). This leaves the remote intact on GitHub, but it’s no longer on the local
repository.

Problem

You wish to merge a pull request from a forked repository from the command line.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Check out the master branch by running git checkout master.
3 Merge the remote pull request into the master branch by running gh merge

https://github.com/GitInPractice/GitInPracticeRedux/pull/2.
4 Push the updated master branch with git push.

The output for these commands should resemble the following.

git checkout master

Switched to branch 'master'
Your branch is up-to-date with 'origin/master'.

gh merge https://github.com/GitInPractice/GitInPracticeRedux/pull/2

From https://github.com/mikemcquaid/GitInPracticeRedux
* [new branch] credits -> mikemcquaid/credits

Merge made by the 'recursive' strategy.
01-IntroducingGitInPractice.asciidoc | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)

git push

Counting objects: 12, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (5/5), 620 bytes | 0 bytes/s, done.
Total 5 (delta 3), reused 0 (delta 0)
To https://github.com/GitInPractice/GitInPracticeRedux.git

Listing 10.4 Output: merging a pull request from a forked repository

Branch checkoutB

PR mergeC
www.it-ebooks.info

http://www.it-ebooks.info/

173 Summary
7a19d89..77f848d master -> master

B shows the checkout of the master branch.

C shows the new merge commit created by the pull-request merge.

D shows the new PR commits being pushed to the remote master branch.

You have successfully merged a pull request from a forked repository from the com-
mand line.

10.3 Summary
In this chapter you learned the following:

 How pull requests are used to request the merge and review of branches
 How forks are used to request pull requests on repositories without commit

access
 How to create a new pull request using gh pull-request
 How to merge a pull request using git merge or gh merge

Branch pushD
www.it-ebooks.info

http://www.it-ebooks.info/

Hosting a repository
You saw in technique 6 how to push to remote repositories, provided by various
organizations on the internet, as a way of sharing your Git repositories with others.
Sometimes, though, you may wish to host a remote Git repository on a machine you
control—for example, to

 Temporarily share a Git repository on your machine with another computer
on the same network

 Keep a full backup of an external Git repository on a server you control
 Provide an internal mirror of an external Git repository to allow faster trans-

fer speeds
 Host a Git repository on a server entirely under your own control

I only use the commands in this chapter to view a local repository or share a local
repository with computers on the same network (rather than over the internet).
Although you’ll see more advanced tools in section 11.1, this chapter focuses on

This chapter covers
 Creating a repository in a format for hosting a server

 Mirroring an existing repository for hosting a server

 Sharing a repository with a local network

 Viewing a repository in a web browser

 Providing advanced Git hosting with other software
174

www.it-ebooks.info

http://www.it-ebooks.info/

175TECHNIQUE 63 Initializing a local repository in a server hosting format: git init --bare
understanding the features provided by Git itself and how they work, rather than
more advanced Git hosting solutions. In essence, this chapter is a guide for software
engineers to understand how Git repositories can be shared and not a guide for sys-
tem administrators on how to set up Git servers. Unless you’re an experienced system
administrator, I’d advise using an external Git hosting provider (such as GitHub)
rather than running your own Git servers.

Technique 63 Initializing a local repository in a server
hosting format: git init - -bare

The Git repositories you’ve seen throughout this book have all had a similar structure:
the working directory contains a checkout of the files in the current branch and a .git
subdirectory that contains the repository data. For example, if you had a GitIn-
PracticeNonBare.git repo, its contents might resemble figure 11.1.

 You can see that it has only the README.md file and the .git repository data subdi-
rectory in the root. Git stores data in a highly space-efficient format. The checked-out
files in a repository’s working directory may sometimes take
up more space than the compressed version of all files
stored in the .git directory!

 On a server, the working directory should never be used
directly, so it’s better to not create one at all. Because you’ll be
sending/receiving Git objects to/from various Git clients
with git push, git fetch, and git pull, you don’t need to
have the actual files checked out on disk. A Git repository
without a working directory is known as a bare repository. The
major difference compared to the first repository you created
in technique 1 is that this repository isn’t in a .git directory.

 Let’s create a bare repository and look at its contents.

Problem

You wish to create a bare Git repository.

Solution

1 Change to the directory you wish to contain your new repository directory: for
example, cd /Users/mike/.

2 Run git init --bare GitInPracticeBare.git. The output should resemble
the following.

git init --bare GitInPracticeBare.git

Initialized empty Git repository in /Users/mike/GitInPracticeBare.git/

B shows the new directory that was created for the bare Git repository.

Listing 11.1 Output: initializing a bare repository

B

Figure 11.1 Typical
repository layout
www.it-ebooks.info

http://www.it-ebooks.info/

176 CHAPTER 11 Hosting a repository
You have successfully created a new bare Git repository.

Discussion

Bare repositories don’t allow new commits to be created locally; they must be pushed
from another repository.

HOW SHOULD YOU NAME BARE REPOSITORIES? When creating bare reposito-
ries, it’s good practice to name them with the extension .git to make it clear
that they’re bare.

Let’s look at the layout of a bare repository; see figure 11.2. You
can see that the repository data that was stored in .git in figure
11.1 is instead in the root in figure 11.2. This means the root of
the repository is effectively the .git directory (which is why it’s
named GitInPracticeBare.git). The bare repository is miss-
ing an index file and a logs directory and instead has a packed-
refs file. These differences are internal Git files that are used
for repositories; don’t worry about their contents (although
you’ll see the packed-refs file in technique 64).

 To clone this Git repository into a non-bare repository
on the same machine, run git clone with the path on disk to the repository and the
new, non-bare repository name as arguments: for example, git clone /Users/mike/
GitInPracticeBare.git GitInPracticeNonBare. In this case, the output will resem-
ble the following:

Cloning into 'GitInPracticeNonBare.git'...
warning: You appear to have cloned an empty repository.
done

The new repository has been created, but it’s empty—it contains no commits. If you
add a file, commit, and push it, it will be pushed to the bare repository and both
repositories will be non-empty. Note that you’d never usually clone a bare repository
on the same machine but would instead create a bare repository on one machine and
clone it on another.

 Personally, I’ve only used bare repositories to create mirrors of existing reposito-
ries on a server I control. I didn’t care about having the files checked-out into the
working directory; I just wanted a copy of all the repository data. Let’s learn how to
use Git to create an exact mirror of another repository.

Technique 64 Mirroring a repository: git clone - -mirror
There are times when you wish to host a new Git repository that’s a mirror of
another—a functionally identical copy. This could be for backup, providing a local
cache for increased speed, or moving a repository to another location. Recall from
technique 8 that git clone creates a clone of the repository locally with all commits,
branches, and tags that are in the repository you’ve cloned from.

Figure 11.2 Bare
repository layout
www.it-ebooks.info

http://www.it-ebooks.info/

177TECHNIQUE 64 Mirroring a repository: git clone --mirror
 If you git clone a repository with a branch named testing, your new, local clone
will contain a remote branch named origin/testing. But what if you wanted this to
create not only the origin/testing remote branch but also a local branch named
testing? In this case, you’d use the --mirror flag for git clone, which creates local
branches for all remote branches it finds (or, in Git terminology, matches all refs
locally). This is useful when you want to create an exact copy of another repository (a
mirror) so others can clone from it and get the same results as cloning from the origi-
nal repository, or to keep as a backup. Recall the discussion of forks on GitHub from
section 10.1. git clone --mirror is effectively what GitHub does when you fork a
repository: it makes a complete copy that can be modified without changing the origi-
nal repository and creates all the same branches.

 Let’s use git clone --mirror to set up a local mirror of the GitInPracticeRedux
repository.

Problem

You wish to mirror an existing remote repository.

Solution

1 Change to the directory you wish to contain your new repository directory: for
example, cd /Users/mike/.

2 Run git clone --mirror https://github.com/GitInPractice/GitInPractice
Redux.git. The output should resemble the following.

git clone --mirror
https://github.com/GitInPractice/GitInPracticeRedux.git

Cloning into bare repository 'GitInPracticeRedux.git'...
remote: Reusing existing pack: 79, done.
remote: Counting objects: 1, done.
remote: Total 80 (delta 0), reused 1 (delta 0)
Unpacking objects: 100% (80/80), done.
Checking connectivity... done.

B shows that git clone --mirror creates a bare repository when it creates a mirror.
This is because --mirror is used only when hosting a repository for other reposito-
ries to pull from.

You have mirrored the existing GitInPracticeRedux repository.

Discussion

As explained in technique 8, git clone can take the following tags:

 No flags—Creates a normal (non-bare) repository with remote branches
 --bare flag—Creates a bare repository with remote branches

Listing 11.2 Output: cloning a mirror

Bare repositoryB
www.it-ebooks.info

http://www.it-ebooks.info/

178 CHAPTER 11 Hosting a repository
 --mirror flag—Creates a bare repository with remote branches and local
branches for every remote branch

Let’s examine the contents of the GitInPracticeRedux.git/packed-refs file:

pack-refs with: peeled fully-peeled
ca74d2b7c4dd15a260e68c6ff3552c64041aacdc refs/heads/inspiration
a9e150fb17301eed6c31aa984411effdab8f3fec refs/heads/master
a8200e1407d49e37baad47da04c0981f43d7c7ff refs/heads/v0.1-release
071d468df295c3866054763250a1344e44f8c3be refs/pull/1/head
75f9dd1ddc24e1fd9e58b8443f7f0176cf7bd2e7 refs/pull/1/merge
e9d27c7df49c07cb2325356ab9a76f90d9f179ae refs/pull/2/head
e6e9208372f3784686499430fec547c20dad6139 refs/pull/2/merge
725c33ace6cd7b281c2d3b342ca05562d3dc7335 refs/tags/v0.1

The packed-refs file contains all the packed refs (refs in Git’s format for data internal
and external transfer) that were fetched from the GitInPracticeRedux repository. It
contains all the created branches, pull requests, and tags that were created in this
repository. These will now be shared with any other repositories that clone this one.

Technique 65 Sharing a repository with other users on the same
network: git daemon

Now that you’ve seen how to create bare repositories suitable for a server to share with
other Git repositories, let’s learn how to serve these to other Git clients. In technique 63,
you saw a repository being cloned from another path on the disk. Although this would
be one way of sharing a repository over the network with Git (giving someone access to
your disk with, say, a network share), it’s not very efficient, because it uses multiple pro-
tocols: the SMB protocol to share the files over the network, and Git’s interaction with
the packed repository. Instead, a Git server allows Git to interact natively in its own for-
mat and git:// protocol, which transfers repository data in a format similar to how it’s
stored locally and defaults to using port 9418.

 Git provides a simple command for basic repository hosting named git daemon. It
provides no user authentication or encryption and only supports the git:// protocol
(rather than the https:// you’ve used throughout this book, or ssh://, which uses SSH
access). These protocols are fairly interchangeable; which one you pick will depend
mostly on whether you need to use HTTP proxies or web servers (for the https:// pro-
tocol), user authentication using SSH (for the ssh:// protocol), or no authentication
(for the git:// protocol). This command may be too limited for some cases, but it’s
great for this technique.

Problem

You wish to share a repository with other users on the same network.

Solution

1 Change directory to the Git repository: for example,
cd /Users/mike/GitInPracticeRedux.git/.

Branch

Pull
request

Tag
www.it-ebooks.info

http://www.it-ebooks.info/

179TECHNIQUE 65 Sharing a repository with other users on the same network: git daemon

ure
2 Run git daemon --verbose --base-path=. --export-all. The output should
resemble the following.

git daemon --verbose --base-path=. --export-all

[72938] Ready to rumble

B shows the daemon command and the list of arguments required to export the Git
repository. These are elaborated on in the discussion section.

C shows the process ID (72938), that the process has started successfully, and that it’s
ready to receive clients.

Now that you have git daemon running, open another terminal window and clone
this repository from a client with git clone git://localhost/:

git clone git://localhost/ GitInPracticeReduxDaemon

Cloning into 'GitInPracticeReduxDaemon'...
remote: Counting objects: 78, done.
remote: Compressing objects: 100% (71/71), done.
remote: Total 78 (delta 26), reused 0 (delta 0)
Receiving objects: 100% (78/78), 7.80 KiB | 0 bytes/s, done.
Resolving deltas: 100% (26/26), done.
Checking connectivity... done.

B shows that you’re using localhost to access the Git daemon on the same machine
you’re hosting it on. It has cloned the repository as expected into a new directory
on the same machine. If you wanted to clone this from another machine, you’d
replace localhost in the command with the IP address of the machine hosting the
daemon on the network: for example, git clone git://192.168.0.123/.

If you view the daemon output again, you’ll see that some lines have been added:

[72984] Connection from [::1]:52891

[72984] Extended attributes (16 bytes) exist <host=localhost>

[72984] Request upload-pack for '/'

[72938] [72984] Disconnected

These lines show that the Git client connected to the server, the repository exposed
some attributes to the client, the client requested that the server upload its contents to
the client, and the client then disconnected from the server.

 You have successfully shared a repository over the network.

Discussion

git daemon can take some parameters to customize its behavior:

Listing 11.3 Output: daemon

Daemon argumentsB
Process readyC

Local serverB

Client connection
Attribute expos

Repository upload
Client disconnect
www.it-ebooks.info

http://www.it-ebooks.info/

180 CHAPTER 11 Hosting a repository
 --verbose—Outputs more verbose log details to the terminal about incoming
Git client connections and access successes and failures. It’s useful when host-
ing a server to enable this for debugging.

 --base-path=.—Indicates what path should be used as the server root. In this
case, you only hosted a single repository, so you set the root to the base direc-
tory of the repository. If you wanted to host a directory that contained multiple
repositories (such as fish.git and cat.git), you could specify the directories,
and then they could be accessed by name (git clone git://localhost/
fish.git or git clone git://localhost/cat.git). I tend to only use git
daemon to share a single repository, so I use --base-path=..

 --export-all—Tells Git to allow access to all Git repositories under the base
path. Without this argument, by default git daemon only allows access to reposi-
tories that have a git-daemon-export-ok file in the repository root (the root for
bare repositories and .git for non-bare repositories). I tend to use this, because
I use git daemon so infrequently and only on repositories I explicitly, currently
want to share.

 --enable=receive-pack—Allows write access to the repository. By default, git
daemon only allows read access (provided by upload-pack) to repositories
unless this flag is provided. It’s not recommended that you provide write access
to non-bare repositories, because it would be undesirable for remote users to be
able to change the contents of your local branches.

 directory—Needed if you wish to host a non-bare repository. In this case, you’d
cd into the directory as normal but add a ./.git argument specifying that you
want to share the .git directory. For example, you might run cd /Users/mike/
GitInPracticeRedux && git daemon --verbose --base-path=. --export-all
./.git. I use this when temporarily hosting non-bare repositories that I’m
working with on my local machine with others.

Technique 66 Displaying a repository in a browser: git instaweb
Now that you’ve shared your repository on disk with other users, it would be useful if
you could provide a basic web interface to go along with your git daemon. Git pro-
vides a basic web interface named gitweb that can be hosted by a local web server.

HOW CAN YOU INSTALL GITWEB? Gitweb is usually installed as part of the
default Git installation (and is in all the official Git installers). If it hasn’t
been, you’ll need to install it separately. This can be done by installing gitweb
(or similar) with your package manager: for example, on Debian/Ubuntu,
run apt-get install gitweb.

Git provides the git instaweb command to host your local repository using the git-
web interface. To run this, you must have a web server installed on your machine. If
you’re using OS X, you can use WEBrick, which is a simple web server provided with
Ruby (which is provided with OS X). If you’re on Linux, you can install Ruby with your
www.it-ebooks.info

http://www.it-ebooks.info/

181TECHNIQUE 66 Displaying a repository in a browser: git instaweb
package manager: for example, on Debian/Ubuntu, run apt-get install ruby

(you’ll use WEBrick on Linux to be consistent with OS X). Windows Git installation
sadly doesn’t provide the git instaweb command, but you can read how to set up git-
web using a separate web server such as Apache or IIS here: https://git.wiki
.kernel.org/index.php/MSysGit:GitWeb.

 Now that you have git instaweb set up, let’s use it to display the repository in a
browser.

Problem

You wish to display the contents of a repository in a browser.

Solution

1 Change to the directory containing your repository: for example,
cd /Users/mike/GitInPracticeRedux/.

2 Write a description for the repository’s web server by running echo "Git In
Practice: Redux" > .git/description.

3 Run git instaweb --httpd=webrick. There will be no output.

Git opens the gitweb interface in your browser; it should resemble figure 11.3. You
can see that it displays a single Git project along with the description you just set, the
owner, and the last change (commit) date. Click the Summary button to view more
information about the GitInPracticeRedux project.

The summary page in figure 11.4 displays the same information as the projects page
but also shows the list of recent commits, branches, and tags in a format resembling
GitX/gitk.

 Detailing all the features of the gitweb interface is beyond the scope of this book,
but it’s pretty self-explanatory. After you’ve finished exploring the gitweb interface,
you can stop the server by running git instaweb --stop.

 You have successfully displayed the contents of the repository in a browser.

Figure 11.3
Gitweb projects
www.it-ebooks.info

https://git.wiki.kernel.org/index.php/MSysGit:GitWeb
https://git.wiki.kernel.org/index.php/MSysGit:GitWeb
http://www.it-ebooks.info/

182 CHAPTER 11 Hosting a repository
Discussion

git instaweb can take some parameters to customize its behavior:

 --local—Ensures that the web server can only be accessed from the local
machine and not from other machines on the same network.

 --port—Can be followed by a port number to specify which port should be
used to access gitweb. For example, --port 8080 means gitweb is hosted on port
8080.

11.1 Advanced Git hosting
In addition to the tools provided with Git that you’ve seen in this chapter, there is a wide
third-party ecosystem of Git tools that can help you share your repositories and provide
a web interface to view them. There are too many and their setup is too involved for me
to detail them all here. Some of the most popular options are as follows:

 GitHub (https://github.com) is the most widely used Git host. It offers many
features beyond sharing and viewing Git repositories. It provides free open
source public hosting and paid private hosting. Alternatively, you can pay for
GitHub Enterprise (https://enterprise.github.com), which provides a hosted
GitHub appliance that can be run inside your network.

 cgit (https://github.com/zx2c4/cgit) provides a fast Git web interface written
in C. It uses forking and a cache to speed up operations and is widely used by
open source projects.

 gitolite (https://github.com/sitaramc/gitolite) provides access control for host-
ing Git repositories, such as users, groups, per-branch/per-repository permis-
sions, and hook support.

Figure 11.4 Gitweb summary
www.it-ebooks.info

https://github.com
https://enterprise.github.com
https://github.com/zx2c4/cgit
https://github.com/sitaramc/gitolite
http://www.it-ebooks.info/

183 Summary
11.2 Summary
In this chapter you learned the following:

 How to create a new bare repository with git init --bare
 How to mirror an existing repository with git clone --mirror
 How to share a repository across the network with git daemon
 How to display a web interface for a repository with git instaweb
 How to provide more advanced Git hosting with GitHub, cgit, and/or gitolite
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part 4

Git best practices

Part 4 (chapters 12–14) discusses different workflows and best practices for
using Git as part of a team of software developers. You’ll be able to compare and
contrast differing approaches and decide which is best for your team.

 This part will cover the following topics:

 How to write a good commit message and avoid whitespace problems
 How to build a commit using only certain changes in a file
 How CMake and Homebrew open source projects use differing merge/

rebase strategies to manage contributions
 How to decide what merge/rebase strategy to use for your project
 How to decide what branching workflow to use for your project
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a clean history
You saw in technique 4 that a clean history can make it easier to find useful infor-
mation. For a history to be clean, it should use good, well-formatted commit mes-
sages for commits that are as small as possible. In this chapter, you’ll learn how to
create a clean history.

12.1 Writing a good commit message
Technique 4 explained why small commits are better and how commit messages
should be formatted. Let’s go into more detail about what makes a good format
when writing commit messages, and why.

 The following listing shows an example of a good commit-message format. It’s
strongly influenced by a guide written by Tim Pope, which is now at http://
mng.bz/hMe2.

This chapter covers
 Writing a good commit message

 Building a commit using only certain changes in a file

 Building a commit using a graphical application

 Avoiding committing bad whitespace
187

www.it-ebooks.info

http://mng.bz/hMe2
http://mng.bz/hMe2
http://www.it-ebooks.info/

188 CHAPTER 12 Creating a clean history

Commits: first line is a summary (<51 characters).

Commit messages should be structured like emails. The first line (the
commit subject) should be treated like the subject of an email. It
should make a brief summary that is elaborated on in the rest of the
commit message. It should have 50 characters or fewer and always be
separated by a new line from the rest of the commit message body.
Without this new line, various output formats that try to display only
the first line of the commit may get confused.

The commit's message body can be split into multiple paragraphs which
should be wrapped at 72 characters or fewer. The wrapping is done to
ensure the output of tools like `git log` remains readable even when it
adds indentation for diffs. Otherwise the commit message has no other
limits on length; it should be as long as it needs to be to fully
explain the commit. While the subject might describe what the commit
does, the body should expand on why the change was made. It should also
use the present tense to match the tense used by commit messages
generated by commands such as git merge.

If you're using GitHub (and some other tools) then the contents of
commit messages can contain Markdown. You may use Markdown to add some
formatting that looks good in ASCII or rendered such as using **bold**,
italics, ~~strikethrough~~, `monospace` or lists bulleted with a `*`
or numbered with, for example `1.`. You shouldn't go overboard with
this but it can add some useful, basic formatting.

12.2 Building a commit from parts of files: git add - -patch
You’ve seen previously in the book how to create commits from all the changes in an
individual file. Because commits should be as small as possible (as discussed in
technique 4), sometimes there may be multiple changes to a file that you want to split
into multiple commits. Of course, you could manually undo and redo these changes
to the files, but that would be tedious. Fortunately Git provides various tools you can
use to add only certain changes in certain files to the index staging area or directly
commit them.

 git add has a --patch (or -p) flag that provides an interactive menu in which you
can select what parts of files you want to add. Make some changes to 00-Preface.ascii-
doc, 01-IntroducingGitInPractice.asciidoc, and 02-AdvancedGitInPractice.asciidoc in
the GitInPracticeRedux repository, and run git add --patch. This will prompt for an
action for the first change in 00-Preface.asciidoc and should resemble the following.

git add --patch

diff --git a/00-Preface.asciidoc b/00-Preface.asciidoc
index d7aa4f8..4b43488 100644
--- a/00-Preface.asciidoc
+++ b/00-Preface.asciidoc
@@ -1,2 +1,5 @@

Listing 12.1 Good commit message format

Listing 12.2 Patch add output
www.it-ebooks.info

http://www.it-ebooks.info/

189Building a commit from parts of files: git add --patch
= Git In Practice
+// Git Through Praxis?
The hotly anticipated sequel to Git In Paris.

+
+Copyright Mike McQuaid
Stage this hunk [y,n,q,a,d,/,e,?] ?
y - stage this hunk
n - do not stage this hunk
q - quit; do not stage this hunk nor any of the remaining ones
a - stage this hunk and all later hunks in the file
d - do not stage this hunk nor any of the later hunks in the file
g - select a hunk to go to
/ - search for a hunk matching the given regex
j - leave this hunk undecided, see next undecided hunk
J - leave this hunk undecided, see next hunk
k - leave this hunk undecided, see previous undecided hunk
K - leave this hunk undecided, see previous hunk
s - split the current hunk into smaller hunks
e - manually edit the current hunk
? - print help
...

B shows the first line of the two-line hunk. A hunk consists of one or more nearby
lines that have all been changed; Git groups them together.

C shows the available options for this particular hunk. I selected ?, which printed the
shown help output.

D shows the help output with all the different available options.

You can see from the help lines that many different options are available at each stage.
These options should be fairly self-explanatory.

 Let’s use s to split this hunk into two hunks. After entering this, you’ll see some-
thing resembling the following.

Stage this hunk [y,n,q,a,d,/,s,e,?]? s
Split into 2 hunks.
@@ -1,2 +1,3 @@
= Git In Practice

+// Git Through Praxis?
The hotly anticipated sequel to Git In Paris.

B The previous hunk, which contained two changes (// Git Through Praxis? and
Copyright Mike McQuaid), has been split into a single hunk. This lets you break
hunks into smaller sections to allow the addition (and eventual committing) of
individual lines.

After viewing the help, I answered y to stage the hunk and q to not stage any of the
remaining hunks. If you do this, the git status output should resemble the following.

Listing 12.3 Output: patch split

Hunk lineB

Stage questionC

Help linesD

Split hunkB
www.it-ebooks.info

http://www.it-ebooks.info/

190 CHAPTER 12 Creating a clean history

git status

On branch master
Your branch is up-to-date with 'origin/master'.

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: 00-Preface.asciidoc

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working
directory)

modified: 00-Preface.asciidoc
modified: 01-IntroducingGitInPractice.asciidoc
modified: 02-AdvancedGitInPractice.asciidoc

B shows the file that had a hunk staged.

C shows the two files that have changes, none of which were staged, and the first file
that had a single hunk staged and some hunks unstaged.

Undo this add to the staging area now by running git reset master.
 git commit also has a --patch (or -i but, confusingly, not -p) flag. It provides the

same interactive menu. Run git commit --patch --message "Preface: add potential
new title.".

git commit --patch --message "Preface: add potential new title."

diff --git a/00-Preface.asciidoc b/00-Preface.asciidoc
index d7aa4f8..4b43488 100644
--- a/00-Preface.asciidoc
+++ b/00-Preface.asciidoc
@@ -1,2 +1,5 @@
= Git In Practice

+// Git Through Praxis?
The hotly anticipated sequel to Git In Paris.

+
+Copyright Mike McQuaid
Stage this hunk [y,n,q,a,d,/,e,?]? s
Split into 2 hunks.
@@ -1,2 +1,3 @@
= Git In Practice

+// Git Through Praxis?
The hotly anticipated sequel to Git In Paris.

Stage this hunk [y,n,q,a,d,/,j,J,g,e,?]? y
@@ -2 +3,3 @@
The hotly anticipated sequel to Git In Paris.

+
+Copyright Mike McQuaid
Stage this hunk [y,n,q,a,d,/,K,g,e,?]? q

Listing 12.4 Output: status after patch add

Listing 12.5 Output: patch commit

Staged fileB

Unstaged
fileC
www.it-ebooks.info

http://www.it-ebooks.info/

191Graphically building a commit from parts of files
[master eec78b2] Preface: add potential new title.
1 file changed, 1 insertion(+)

git commit --patch is equivalent to git add --patch && git commit. Perform the
same actions with git commit --patch as with git add --patch: split the first hunk
with s, stage the first hunk split with y, and then don’t stage any of the others with q.
The output is appended with the information you’d expect from git commit but is
otherwise identical to that from git add --patch.

 Now run git reset HEAD^ to undo the current commit so you can try staging
hunks graphically.

12.3 Graphically building a commit from parts of files
As you may have noticed, throughout this book I mostly prefer to use (and therefore
teach you to use) the Git command-line application rather than GUIs. There are a few
exceptions: I use GitX (or gitk, first seen in technique 4) to easily visualize the history
of a repository.

 You saw in section 12.2 how to build commits from parts of files from the Git
command-line application, but it’s a task I’ve found is far easier using a graphical
application. In this section, I’ll show you how to do this with GitX or Git Gui, which
provides this functionality in a separate application.

12.3.1 Graphically building a commit in GitX

GitX provides a staging mode that lets you add entire files or individual hunks and
provides support for graphically staging hunks. If you click the Stage button at upper
right in GitX, it should resemble figure 12.1.

New commit

Figure 12.1 GitX stage mode
www.it-ebooks.info

http://www.it-ebooks.info/

192 CHAPTER 12 Creating a clean history
The staging mode shows a selection of files to stage and the changes to the selected
file, and lets you stage hunks or selected lines through their respective buttons. Stage
the // Git Through Praxis? line by clicking it and then clicking the Stage Line button
that appears to the right of that line. If you want to stage all the lines in a hunk, you
can click the Stage button at the top-right of the hunk. If you want to stage all changes
in a file, you can right-click the filename in the Unstaged Changes list and select Stage
Changes from the right-click menu.

 Figure 12.2 shows GitX after the changes to the file were staged and a commit mes-
sage was entered. The file now appears in both the Unstaged Changes and Staged
Changes file lists. If the file had all its hunks staged, it would no longer appear in the
Unstaged Changes list.

 The staging area used by GitX is the same staging area used by the rest of Git. If
you quit GitX now and ran git status, you’d see the same result as before: some
changes in 00-Preface.asciidoc were staged.

 Now that there are some staged changes, the Commit button is enabled. After the
commit message has been entered, you can click it.

 Once the changes have been committed, you see a large message with the new
SHA-1, as shown in figure 12.3. The Unstaged Changes list remains the same, but the
items in the Staged Changes list were used to create the new commit, so they’ve been
removed from this list.

Figure 12.2 GitX staged hunk
www.it-ebooks.info

http://www.it-ebooks.info/

193Graphically building a commit from parts of files
12.3.2 Graphically building a commit in Git Gui

Although GitX combines staging and viewing history into one application, by default
Git provides two GUI applications for this purpose: gitk (first seen in technique 4) and
Git Gui. Run git reset HEAD^ to undo the current commit; then run Git Gui.

 Figure 12.4 shows the Git Gui user interface. It’s similar to GitX’s stage mode, but
the Unstaged Changes and Staged Changes (Will Commit) file lists are shown on the
left side rather than left and right of the commit message.

Figure 12.3 GitX stage-mode commit

Figure 12.4 Git Gui
on Windows 8.1
www.it-ebooks.info

http://www.it-ebooks.info/

194 CHAPTER 12 Creating a clean history
You select the file whose changes you want to view by clicking it in the Unstaged
Changes list. Stage the // Git Through Praxis? line by right-clicking it and selecting
Stage Line for Commit from the right-click menu. If you want to stage all the lines in a
hunk, you select Stage Hunk for Commit from the right-click menu. If you want to
stage all changes in a file, select the filename in the Unstaged Changes list, click the
Commit menu, and click Stage to Commit.

 Figure 12.5 shows that a line has been staged in 00-Preface.asciidoc: it’s displayed
in the Staged Changes (Will Commit) list. You can now enter a commit message and
click Commit.

 After you click Commit, there is no sign of the commit other than 00-Preface.ascii-
doc being removed from the Staged Changes (Will Commit) list. Like GitX, though,
Git Gui has successfully committed the file.

12.4 Avoiding whitespace issues: git diff - -check
Git expects certain whitespace usage in files. Many Git users (and almost all Git-based
open source projects) try to avoid Git’s whitespace warnings. To do so, it’s always a
good idea to try to ensure that your whitespace follows good Git practice:

 No lines in files end with whitespace (trailing tab or space characters).
 No lines in files start with one or more space characters followed immediately

by one or more tab characters.
 All files end with one or more newline character(s): a line-feed character on

Unix or a carriage-return and a line-feed character on Windows.

You can check that you haven’t violated any of these rules by running git diff
--check. For example, if you added some whitespace errors to 00-Preface.asciidoc, the
output might resemble the following.

Figure 12.5 Git Gui
staged line
www.it-ebooks.info

http://www.it-ebooks.info/

195Summary

git diff --check

00-Preface.asciidoc:1: trailing whitespace.
+= Git In Practice
00-Preface.asciidoc:2: space before tab in indent.
+ // Git Through Praxis?

B shows that line 1 of 00-Preface.asciidoc has whitespace at the end of the line.

C shows that line 2 of 00-Preface.asciidoc has a space character before a tab character
at the beginning of the line.

Regular git diff (but, bizarrely, not git diff --check) shows \ No newline at end of
file if the file’s trailing newline is missing. If you have Git 2.0 (released May 28, 2014)
or newer, or if you enabled colored output in section 7.1.1, git diff displays
whitespace errors with a red background.

 It’s also worth checking whether you can configure your text editor of choice to fix
any of these errors for you when you save files. This feature is fairly common.

12.5 Summary
In this chapter you learned the following:

 How to use an email format and Markdown to write good commit messages
 How to use git add --patch or git commit --patch to stage only chosen hunks

for a new commit
 How to use GitX or Git Gui to stage only selected lines or hunks for a new commit
 How to use git diff --check to make sure you haven’t added any bad

whitespace changes

Listing 12.6 Output: diff whitespace check

Trailing whitespaceB

Space before tabC
www.it-ebooks.info

http://www.it-ebooks.info/

Merging vs. rebasing
As discussed in technique 14 and technique 43, merging and rebasing are two strat-
egies for updating the contents of one branch based on the contents of another.
Merging joins the history of two branches together with a merge commit (a commit
with two parent commits); and rebasing creates new, reparented commits on top of
the existing commits.

 Why are there two strategies for accomplishing essentially the same task? Let’s
find out by comparing the Git history of two popular open source projects and
their different branching strategies.

13.1 CMake’s workflow
CMake is a cross-platform build-system created by Kitware. It has many contributors
both inside and outside Kitware; most contributions are among those with direct
push access to the Kitware Git repository.

This chapter covers
 Using CMake’s branching and merging strategy to

manage contributions

 Using Homebrew’s rebasing and squashing strategy to
manage contributions

 Deciding what strategy to use for your project
196

www.it-ebooks.info

http://www.it-ebooks.info/

197CMake’s workflow
 CMake’s Git repository is available to access at http://cmake.org/cmake.git. It’s also
mirrored on GitHub at https://github.com/Kitware/CMake if you’d rather browse or
clone it from there. Please clone it and examine it while reading this chapter.

 CMake makes heavy use of branching and merges. Several of the branches visible
or implied in figure 13.1 are as follows:

 next—Shown in the figure as origin/next. This is an integration branch used for
integration of feature branches (also known as topic branches) when developing a
new version of CMake. master is merged in here regularly to fix merge conflicts.

 nightly—Shown in the figure as origin/nightly. It follows the next branch
and is updated to the latest commit on next automatically at 01:00 UTC every
day. nightly is used by automated nightly tests to get a consistent version for
each day.

 master—Seen in figure indirectly; merged in the Merge 'branch' master into
next commit. This is an integration branch that is always kept ready for a new
release; release branches are merged into here and then deleted. New feature
branches are branched off of master.

 Feature branches—Seen in the figure as Merge topic '...' into next commits.
These are used for development of all bug fixes and new features. All new com-
mits (except merge commits) are made on feature branches. They’re merged
into next for integration testing and master for permanent inclusion and can
then be deleted.

Figure 13.1 CMake repository history
www.it-ebooks.info

http://cmake.org/cmake.git
https://github.com/Kitware/CMake
http://www.it-ebooks.info/

198 CHAPTER 13 Merging vs. rebasing
The merging of master into next is done immediately after merging any feature
branch to master. This ensures that any merge conflicts between master and next are
resolved quickly in the next branch. The regular merging of feature branches into
next allows integration testing before a new release is prepared and provides context
for individual commits; the branch name used in the merge commit helps indicate
what feature or bug the commit was in relation to.

 Figure 13.2 focuses on the interactions between branches in the CMake workflow
(rather than the interactions between commits and branches in figure 13.1). For a
new commit to end up in master, a new feature branch needs to be created, commits
must be made on it, the feature branch must be merged to the next branch for inte-
gration testing, and finally the feature branch must be merged to master and deleted.

13.1.1 Workflow commands

The following commands are used by CMake developers to clone the repository, cre-
ate new branches for review, and merge them to next to be tested, and by CMake core
maintainers to finally merge them into master.

nightly branch next branch master branch

feature branch
e.g., graphviz-at-

generate-time

feature branch
e.g., FindLua

Updated every night
to point to the latest

commit on next
Next is infrequently

re-created from master.

New feature branches
are created frequently for
each new fix/feature and
branched from master.

Feature branches can
be shared between

multiple committers (but
usually are not).

Master is merged into next
frequently to resolve conflicts.

All commits and branching occur within the CMake repository.
Many regular committers with commit access.

Feature branches are
frequently merged

into next and master
for a new release.

Figure 13.2 CMake branch/merge workflow
www.it-ebooks.info

http://www.it-ebooks.info/

199CMake’s workflow
 These steps set up the CMake repository on a local machine:

1 Clone the fetch-only CMake Git repository with git clone http://cmake.org/
cmake.git.

2 Add the pushable staging repository with git remote add stage git@cmake
.org:stage/cmake.git. The staging repository is used for testing and review-
ing branches before they’re ready to be merged. CMake developers are given
push access to it, but only CMake core maintainers have push access to the
main repository.

These commands make a new branch and submit it for review:

1 Fetch the remote branches with git fetch origin.
2 Branch from origin/master with git checkout -b branchname origin/master.
3 Make changes and commit them with git add and git commit.
4 Push the branch to the staging repository with git push --set-upstream stage

branchname.
5 Post an email to the CMake mailing list (www.cmake.org/mailman/listinfo/

cmake-developers) to ask other CMake developers for review and feedback of
the changes.

These steps merge a branch for nightly testing:

1 Fetch the remote branches with git fetch stage.
2 Check out the next branch with git checkout next.
3 Merge the remote branch with git merge stage/branchname.
4 Push the next branch with git push.

CMake developers perform these steps with the stage command over SSH by running
ssh git@cmake.org stage cmake merge -b next branchname.

 These steps make changes based on feedback from other CMake developers:

1 Check out the branch with git checkout branchname.
2 Make changes and commit them with git add and git commit.
3 Push the new commits to the staging repository with git push.
4 Post another email to the CMake mailing list (www.cmake.org/mailman/

listinfo/cmake-developers).

These steps allow a CMake core maintainer to merge a branch into master after suc-
cessful review:

1 Fetch the remote branches with git fetch stage.
2 Check out the master branch with git checkout master.
3 Merge the remote branch with git merge stage/branchname.
4 Push the master branch with git push.

CMake core maintainers perform these steps with the stage command over SSH by
running ssh git@cmake.org stage cmake merge -b master branchname.
www.it-ebooks.info

www.cmake.org/mailman/listinfo/cmake-developers
www.cmake.org/mailman/listinfo/cmake-developers
http://www.it-ebooks.info/

200 CHAPTER 13 Merging vs. rebasing
13.2 Homebrew’s workflow
Homebrew is a package manager for OS X. It has thousands of contributors but a very
small number of maintainers with commit access to the main repository (five at the
time of writing).

 Homebrew’s main Git repository is available to access at https://github.com/
Homebrew/homebrew. Please clone it and examine it while reading this chapter.

 Homebrew has very few merge commits in the repository (remember that fast-
forward merges don’t produce merge commits). In figure 13.3, you can see that the his-
tory is entirely continuous despite multiple commits in a row from the same author
and noncontinuous dates. Branches are still used by individual contributors (with and
without push access to the repository), but branches are rebased and squashed before
being merged. This hides merge commits, evidence of branches, and temporary com-
mits (for example, those that fix previous commits on the same branch) from the
master branch.

 Figure 13.4 focuses on the branches and repositories in the Homebrew workflow.
New commits can end up on master by being directly committed by those with main
repository access, by a feature branch being squashed and picked from a forked repos-
itory or, very rarely, through a major refactor branch being merged.

 On the infrequent occasions when a major refactor branch is needed on the core
repository (say, for heavy testing of the major refactor), it’s kept as a branch in the
main repository and then merged. This branch isn’t used by users but may be commit-
ted to and tested by multiple maintainers.

Figure 13.3 Homebrew repository history
www.it-ebooks.info

https://github.com/Homebrew/homebrew
https://github.com/Homebrew/homebrew
http://www.it-ebooks.info/

201Homebrew’s workflow
13.2.1 Workflow commands

The following commands are used by Homebrew contributors to clone the repository,
create new branches, and issue pull requests, and by Homebrew maintainers to finally
merge them into master.

 These commands set up the Homebrew repository on the local machine:

1 Clone the fetch-only Homebrew Git repository with git clone https://
github.com/Homebrew/homebrew.git.

2 Fork the Homebrew repository on GitHub. This creates a pushable, personal
remote repository. This is needed because only Homebrew maintainers have
push access to the main repository.

3 Add the pushable forked repository with git remote add username https://
github.com/username/homebrew.git.

These commands make a new branch and submit it for review:

1 Check out the master branch with git checkout master.
2 Retrieve new changes to the master branch with git pull --rebase (or Home-

brew’s brew update command, which calls git pull).
3 Branch from master with git checkout -b branchname origin/master.
4 Make changes and commit them with git add and git commit.
5 Push the branch to the fork with git push --set-upstream username

branchname.
6 Create a pull request on GitHub, requesting review and merge of the branch.

master branch

major refactor
branch

Major refactor
branches are infrequently

merged into master
and then deleted.

Refactor branches
are created very

infrequently
(maybe once a year).

Feature branches
are created very

frequently in forks
of the main
repository.

Committers with
main repository commit

access frequently commit
directly to the master

branch.

Many commits and few branches occur within the
main Homebrew repository. Many committers,

few with commit access.
Fork of the main

Homebrew repository
with a single committer

feature/fix
branch

Feature branches
are very frequently
rebased, squashed,

and picked by
committers with
main repository
commit access.

Another fork of the main
Homebrew repository.

feature/fix
branch

Figure 13.4 Homebrew’s branch/rebase/squash workflow
www.it-ebooks.info

http://www.it-ebooks.info/

202 CHAPTER 13 Merging vs. rebasing
These commands make changes based on feedback:

1 Check out the branch with git checkout branchname.
2 Make changes and commit them with git add and git commit.
3 Squash the new commits with git rebase --interactive origin/master.
4 Update the remote branch and the pull request with git push --force.

These commands allow a Homebrew maintainer to merge a branch into master:

1 Check out the master branch with git checkout master.
2 Add the forked repository and cherry-pick the commit with git add remote

username https://github.com/username/homebrew.git, git fetch username,
and git merge username/branchname. Alternatively, some maintainers (includ-
ing me) use Homebrew’s brew pull command, which pulls the contents of a
pull request onto a local branch by using patch files rather than fetching from
the forked repository.

3 Rebase, reword, and clean up the commits on master with git rebase
--interactive origin/master. It’s common for Homebrew maintainers to
edit or squash commits and rewrite commit messages but preserve the author
metadata so the author retains credit. Often a commit will be edited to contain
a string like “Closes #123”, which automatically closes the pull request num-
bered 123 when the commit is merged to master. This was covered in greater
detail in chapter 10.

4 Push the master branch with git push.

13.3 CMake workflow pros and cons
CMake’s approach makes it easy to keep track of what feature branches have been
merged, when they were merged, and by whom. Individual features and bug fixes live
in separate branches and are integrated only when and where it makes sense to do so.
Individual commits and evidence of branches (but not the branches themselves) are
always kept in history for future viewing. Feature branches are tested individually, and
then integration testing is done in the next branch. When a feature branch is deemed
to be in a sufficiently stable state, it’s merged into the master branch and deleted.
This ensures that the master branch is always stable and kept ready for a release.

 When developing desktop software like CMake that ships binary releases, having a
very stable branch is important; releases are a formal, time-consuming process, and
updates can’t be trivially pushed after release. Thus it’s important to ensure that test-
ing is done frequently and sufficiently before releasing.

 CMake’s approach produces a history that contains a lot of information but, as
seen from the plethora of lines in figure 13.1, can be hard to follow. Merge commits
are frequent, and commits with actual changes are harder to find as a result. This can
make reverting individual commits tricky; using git revert on a merge commit is
hard because Git doesn’t know which side of the merge it should revert to. In addi-
tion, if you revert a merge commit, you can’t easily re-merge it.
www.it-ebooks.info

http://www.it-ebooks.info/

203Homebrew workflow pros and cons
 There are also potential trust issues with CMake’s approach. Everyone who wants
to create a feature branch needs commit access to the CMake repository. Because Git
and Git-hosting services don’t provide fine-grained access control (such as restricting
access to particular branches), and because CMake’s Git workflow doesn’t rewrite his-
tory, anyone with commit access could, for example, make commits directly to the
master branch and circumvent the process. Everyone who commits to CMake needs
to be made aware of the process and trusted not to break or circumvent it. Kitware
protects against process violations with rewriting and server-side checks. But this
requires complex setup and server configuration and a willingness to rewrite pushed
branches to fix mistakes.

13.4 Homebrew workflow pros and cons
A major benefit of Homebrew’s approach should be evident from figure 13.3: the his-
tory is simple. The master branch contains no direct merges, so ordering is easy to
follow. Commits contain concise descriptions of exactly what they do, and there are
no commits that are fixing previous ones. Every commit communicates important
information.

 As a result of commits being squashed, it’s also easy to revert individual commits
and, if necessary, reapply them at a later point. Homebrew doesn’t have a release pro-
cess (the top of the master branch is always assumed to be stable and delivered to
users), so it’s important that changes and fixes can be pushed quickly rather than hav-
ing a stabilization or testing process.

WHY IS A READABLE HISTORY IMPORTANT FOR HOMEBREW? Readable history is
an important feature of Homebrew’s workflow. Homebrew uses Git not just as
a version control system for developers, but also as an update delivery mecha-
nism for users. Presenting users with a more readable history allows them to
better grasp updates to Homebrew with basic Git commands and without
understanding merges.

Homebrew’s workflow uses multiple remote repositories. Because only a few people
have commit access to the core repository, their approach is more like that of Linus
on the Git project (as discussed in section 1.1), often managing and including com-
mits from others more than making their own commits. Many commits made to the
repository are made by squashing and merging commits from forks into the master
branch of the main repository. The squashing means any fixes that needed to be made
to the commit during the pull request process won’t be seen in the master branch
and each commit message can be tailored by the core team to communicate informa-
tion in the best possible way.

 This workflow means only those on the core team can do anything dangerous to
the main repository. Anyone else’s commits must be reviewed before they’re applied.
This puts more responsibility on the shoulders of the core team, but other contribu-
tors to Homebrew only need to know how to create a pull request and not how to do
stuff like squash or merge commits.
www.it-ebooks.info

http://www.it-ebooks.info/

204 CHAPTER 13 Merging vs. rebasing
 Unfortunately, Homebrew’s approach means most branch information is (inten-
tionally) lost. It’s possible to guess at branches from multiple commits with related
titles and/or the same author for multiple commits in a row, but nothing explicit in
the history indicates that a merge has occurred. Instead, metadata is inserted into
commit messages stating that a commit was signed-off by a particular core contributor
and which pull request (or issue) this commit related to.

13.5 Picking your strategy
Organizations and open source projects vary widely in their branching approaches.
When picking between a branch-and-merge or a branch-rebase-and-squash strategy,
it’s worth considering the following:

 If all the committers to a project are trusted sufficiently and can be educated on
the workflow, then giving everyone access to work on a single main repository
may be more effective. If committers’ Git abilities vary dramatically and some
are untrusted, then using multiple Git repositories and having a review process
for merges between them may be more appropriate.

 If your software can release continuous, quick updates (like a web application)
or has a built-in updater (like Homebrew), then focusing development on a sin-
gle (master) branch is sensible. If your software has a more time-consuming
release process (such as desktop or mobile software that needs to be compiled
and perhaps even submitted to an app store for review), then working across
many branches may be more suitable. This applies even more if you have to
actively support many released versions of the software simultaneously.

 If it’s important to be able to trivially revert merged changes on a branch (and
perhaps re-merge them later), then a squashing process may be more effective
than a merging process.

 If it’s important for the history to be easily readable in tools such as GitX and
gitk, then a squashing process may be more effective. Alternatively, a merging
process can still be done, but with less frequent merges so each merge contains
at least two or more commits. This ensures that the history isn’t overwhelmed
with merge commits.

There are various other considerations you could take into account, but these are a
good starting point. You may also consider creating your own blended approach that
uses merging and squashing in different situations.

 Regardless of which workflow you decide is best for your project, it’s important to
try to remain consistent: not necessarily across every branch (for example, it might be
reasonable to always make merge commits in master but always rebase branches on
top of other branches), but across the repository. This should ensure that, whatever
strategy is adopted, the history will communicate something about the project’s devel-
opment process and new committers can look at the history for an example of what
their workflow should be like.
www.it-ebooks.info

http://www.it-ebooks.info/

205Summary
WHAT IS THE AUTHOR’S PREFERRED APPROACH? Although I’ve committed to
both projects, most of my open source time is spent working on Homebrew. It
will therefore probably come as no surprise to hear that I prefer Homebrew’s
approach. Maintaining a simple and readable history has frequently paid off
in terms of quickly being able to git bisect or git revert problematic com-
mits. Also, I prefer software-release processes that favor lots of small updates
rather than fewer, large updates. I think these processes are easier to test,
because they encourage incremental improvements rather than huge, sweep-
ing changes.

13.6 Summary
In this chapter you learned the following:

 How CMake uses multiple branches to keep features developed in separation
 How Homebrew uses a single branch to release continuous updates to users
 How merging allows you to keep track of who added commits, when, and why
 How rebasing and squashing allow you to maintain a cleaner history and elimi-

nate commits that may be irrelevant
www.it-ebooks.info

http://www.it-ebooks.info/

Recommended
team workflows
You saw in sections 13.1 and 13.2 that two teams can both use Git as a version con-
trol system to manage a software project but handle branches, merging, and rebas-
ing very differently. The different strategies for deciding how and when to branch,
merge, or rebase as part of a team are called team workflows. These workflows allow
for different ways of handling (or not handling) stable releases, tags, and bug fix-
ing of previous releases. In this chapter, you’ll learn about the two most popular Git
workflows and two of my personal workflows.

This chapter covers
 Using GitHub Flow to manage an untagged project

 Using Git Flow to manage a tagged project

 Using Mike Flow Single to manage a single-release
project

 Using Mike Flow Multiple to manage a multiple-release
project
206

www.it-ebooks.info

http://www.it-ebooks.info/

207GitHub Flow
14.1 GitHub Flow
GitHub Flow is so named because it’s the Git workflow that came out of the GitHub
organization. It was first formally described in a blog post by Scott Chacon in 2011 at
http://scottchacon.com/2011/08/31/github-flow.html.

 GitHub Flow is simple because it essentially involves only two types of branches: the
default master branch and feature branches. A feature branch is one that is used only
for the development of a single feature (or sometimes bug fix) and then deleted after
being merged into another branch.

 In GitHub Flow

 All commits are made on feature branches.
 Feature branches are merged to the master branch after review in a pull

request.
 All commits to master are considered stable.

GitHub automatically deploys all commits to the master branch to the production
web servers. You can read more about GitHub Flow on GitHub’s guide at https://
guides.github.com/introduction/flow/index.html.

 Let’s say you’re working on a new web application called LintHub that lets people
get together and share those annoying bits of fluff that accumulate in pockets. You
want to add a feature for users to message each other, so you create a feature branch
named user-chat from the master branch. You then commit your changes to this
branch over the course of a few weeks and push them to the remote repository. When
you’ve tested your changes and think they’re stable enough to be used on the main
web server, you create a pull request on GitHub. Your coworkers think your changes
are OK, so you merge your changes to master, delete the user-chat branch, and
deploy the changes to the main web server where they can be used by users. If you need
to fix a bug with users being unable to message Scottish people, you can create another
feature branch called fix-scottish-users-chats and follow the same process.

 Let’s look at figure 14.1 from top (the oldest commit) to bottom (the newest
commit):

1 The initial commit to a repository is on the master branch and made with git
add and git commit.

2 A new feature is being developed, so it’s branched off the master branch with
git checkout -b.

3 Another feature is developed in parallel, so it too is branched off the master
branch with git checkout -b.

4 Commits are made to both feature branches with git commit. They’re pushed
periodically with git push. Commits may be rewritten locally with git rebase
--interactive or git commit --amend before being pushed; but they’re never
rewritten after being pushed, so git push --force is never required.
www.it-ebooks.info

http://scottchacon.com/2011/08/31/github-flow.html
https://guides.github.com/introduction/flow/index.html
https://guides.github.com/introduction/flow/index.html
http://www.it-ebooks.info/

208 CHAPTER 14 Recommended team workflows
5 A feature branch is submitted for review in a pull request either through the
GitHub web interface or with gh pull-request (introduced in technique 59).
If any changes are needed due to comments in the pull request, they’re com-
mitted. The pull request is automatically updated after new commits have been
pushed to the remote branch. When the branch is ready, it’s merged to master
with git merge --no-ff and deleted locally with git branch --delete and
remotely with git push --delete.

6 The remaining feature branch needs to use the changes in master and so
merges them with git merge --no-ff. This may be to use them in the branch or
to resolve conflicts in the feature branch before they’re merged into master.

7 The remaining feature branch is submitted for review, merged, and deleted.

2 feature
branches

Branch Multiple
branches

master
branchTime

Commit

Key

Parenting Merging

2

1

5

4

6

7

4

3

Figure 14.1 GitHub Flow
www.it-ebooks.info

http://www.it-ebooks.info/

209Git Flow
14.1.1 Pros and cons

The pros of GitHub Flow are as follows:

 It’s beautiful in its simplicity. As a result, it’s easy to use with Git, GitHub’s web
interface, and any Git graphical tools that support branching and merging.

 Because everything ends up in the master branch, there’s little concern about
commits getting lost.

 A branch is created, committed to, reviewed in a pull request, committed to
again if necessary, merged, and deleted. If a branch exists, that’s because either
it hasn’t been merged to master or someone forgot to delete it.

The cons of GitHub Flow are as follows:

 As a large web application, GitHub doesn’t have versioned releases to custom-
ers. Every commit to the master branch is deployed to the production servers as
soon as it’s made. This approach is known as continuous deployment. It works well
for web applications but doesn’t work so well for things like desktop application
software that needs to be released to users and requires them to restart their
application to update it. In this case, because hotfixes can’t be pushed to
master without branching and review, it’s important that feature branches be
sufficiently tested before merging to master.

 Some pieces of software need to support multiple versions at once—for exam-
ple, new stable versions of v1.0 and v2.0. GitHub Flow doesn’t account for this
case at all.

In my experience, GitHub Flow is a pleasantly simple workflow that’s well suited for
web projects that use continuous deployment. It’s not well suited for desktop software,
particularly when multiple releases need to be supported at once (release new v1.x
and v2.x versions). These more advanced cases call for a more advanced workflow,
such as Git Flow.

14.2 Git Flow
Git Flow was probably the first formal Git branching and merging workflow to take off.
In 2010, Vincent Driessen wrote a blog post describing a Git workflow he’d been using
for his software projects at http://nvie.com/posts/a-successful-git-branching-model/.
The goals of Git Flow were to make heavy use of branching in Git and strict rules to
provide a shared team understanding of the software release process while ensuring
quality.

 Git Flow involves five different types of branches:

 The master branch is used only for stable releases. Every commit to the master
branch is tagged immediately. Commits are never made directly but are merged
in from hotfix or release branches.
www.it-ebooks.info

http://nvie.com/posts/a-successful-git-branching-model/
http://www.it-ebooks.info/

210 CHAPTER 14 Recommended team workflows
 The develop branch is a long-lived branch (it’s never deleted). It’s used for the
bulk of daily development either through bug-fix commits directly to it or fea-
ture, release, or hotfix branch merges to it.

 Feature branches are branched off develop and are used for new feature develop-
ment. When they’re ready, they’re merged back into develop. They can be
named anything.

 Release branches are used to stabilize a release. They’re branched off develop and
have bug fixes made to them and hotfixes merged into them. Bug fixes and hot-
fixes are merged back into the develop branch. They’re named prefixed with
release-.

 Hotfix branches are used for small fixes that need an immediate new release.
They’re merged into master (where they’re immediately tagged) and into the
current release branch if it exists, or develop if it doesn’t. They’re named pre-
fixed with hotfix-.

Let’s say you’re working on a new mobile application called GetPub that lets people
get directions to the nearest pub. You want to add a feature for saving particular pubs,
so you create a feature branch named save-pubs from the develop branch. You then
commit your changes to this branch over the course of a few weeks and push them to
the remote repository. When you’ve tested your changes and think they’re stable
enough to be included in the main development branch, you merge them into
develop and delete your branch. When the new 2.x release branch is created from
develop, your Save Pub feature is included. After the release branch has been suffi-
ciently tested, it’s merged into master, tagged, and released to the users of the mobile
application. If you need to fix a bug with saving Scottish pubs, you can create a hotfix
branch named hotfix-save-scottish-pubs from the 2.x release branch, commit to
it, test it, and then merge it into master, tag it, and release it to your users.

 A diagram will help you understand Git Flow. Let’s look at figure 14.2 from top
(the oldest commit) to bottom (the newest commit):

1 The initial commit to a repository is on the develop branch and made with git
add and git commit.

2 A release branch for the v1.x release series is branched off the develop branch
with git checkout -b.

3 A new feature is being developed, so it’s branched off the develop branch with
git checkout -b.

4 Commits are made to the develop branch for changes that aren’t significant
enough to be feature branches and aren’t needed on the release branches. For
example, small tweaks to behavior of the application that aren’t fixes may be
committed directly to the develop branch.

5 Another feature is developed in parallel, so it too is branched off the develop
branch with git checkout -b.
www.it-ebooks.info

http://www.it-ebooks.info/

211Git Flow
6 Commits are made to both feature branches with git commit. They may be
pushed periodically with git push but typically to the developer’s own remote
repository rather than the main repository. Commits may be rewritten locally
with git rebase --interactive or git commit --amend before being pushed but
are never rewritten after being pushed, so git push --force is never required.

2 feature
branches

2 release
branches

2 hotfix
branches

develop
branch

Branch Multiple
branches

master
branchTime

v1.0

Tag

Commit

Key

Parenting Merging

v2.1

v2.0

v1.1

3

1

4

10

11

12

15

2

6 6

5

14

15

13

10

8

9

7

Figure 14.2 Git Flow
www.it-ebooks.info

http://www.it-ebooks.info/

212 CHAPTER 14 Recommended team workflows
7 Commits are made to the release branches with git commit for changes or fixes
specific to a release but not applicable to other application development. For
example, such a commit may be changing a version number displayed in the
application.

8 A release branch is ready and merged to master with git merge --no-ff. It’s
not deleted but is kept around indefinitely in case any more stable releases are
needed from it. It’s immediately tagged v1.0 with git tag and pushed with git
push and git push --tags.

9 A new hotfix is needed for both the develop branch and a release branch, so a
hotfix branch is branched off the master branch with git checkout -b.

10 A hotfix branch is ready and merged to both develop and master with git
merge --no-ff, and deleted locally with git branch --delete and remotely
with git push --delete. The new master branch is immediately tagged v1.1
with git tag and pushed with git push and git push --tags.

11 A feature branch is ready and merged to develop with git merge --no-ff, and
deleted locally with git branch --delete and remotely with git push --delete.

12 A new release branch for the v2.x release series is branched off the develop
branch with git checkout -b.

13 A release branch is ready and merged to master with git merge --no-ff. It isn’t
deleted but is kept around indefinitely in case any more stable releases are
needed from it. It’s immediately tagged v2.0 with git tag and pushed with git
push and git push --tags.

14 Another hotfix is needed for both the develop branch and a release branch, so
another hotfix branch is branched off the master branch with git checkout -b.

15 A hotfix branch is ready and merged to both develop and master with git
merge --no-ff, and deleted locally with git branch --delete and remotely
with git push --delete. The new master branch is immediately tagged v2.1
with git tag and pushed with git push and git push --tags.

Git Flow also has a set of Git extensions that let you work through this workflow with
some commands. For example, to create a new feature branch, you can run git flow
feature start new-feature-name. You can download these extensions and read more
about them at https://github.com/nvie/gitflow.

14.2.1 Pros and cons

The pros of Git Flow are as follows:

 It allows you to keep track of released versions, features in development, and
urgent and non-urgent bug fixes through branch naming.

 Having a formal flow through which branches are merged means a review pro-
cess can ensure that things are reviewed multiple times before going into a
release.
www.it-ebooks.info

https://github.com/nvie/gitflow
http://www.it-ebooks.info/

213Mike Flow
The cons of Git Flow are as follows:

 It’s complicated to come to grips with. It can work well for organizations where
people can be trained and onboarded, but it’s less suitable for short projects or
open source projects that seek to attract many new contributors.

 If you’re using continuous deployment, the number of merges required from
feature branch to master branch can be excessive.

In my experience, Git Flow is more complicated than it needs to be. Although it uses
the flexibility of Git’s branching, it has so many rules and restrictions that it becomes
difficult to use. The previously mentioned extensions seem like a negative rather than
positive for me; people clearly found Git Flow sufficiently difficult to work with that a
separate layer had to be added on top of Git to use it effectively! It’s definitely more
complex to both use and understand than GitHub Flow, and it’s harder to keep track
of what changes are outstanding as a result. But as I mentioned earlier, GitHub Flow
doesn’t suit desktop application development as well as Git Flow. For these reasons,
I’ve created my own Git workflow known as Mike Flow.

14.3 Mike Flow
I’ve used many different Git workflows over the years, from Git Flow, to GitHub Flow,
to the Homebrew and CMake workflows mentioned in sections 13.1 and 13.2. They all
have their pros and cons, but my preferred workflow is something I’ve named for this
book: Mike Flow.

 As you’ve seen with GitHub Flow and Git Flow, different release processes are opti-
mized for continuously deployed web applications versus more slowly received desk-
top applications. For this reason, Mike Flow has two slightly different workflows: Mike
Flow Single and Mike Flow Multiple.

 The Single and Multiple in these cases refer to how many different versions of the
software you need to support at once. Say you’ve made a v1.5 release and a v2.0
release. Will you make a v1.6 release after v2.0? If not, you want Mike Flow Single; and
if so, you want Mike Flow Multiple. If you’re doing continuous deployment, that’s OK;
Mike Flow Single can be used in this fashion too.

14.3.1 Mike Flow Single

Mike Flow Single is essentially GitHub Flow with two extra elements:

1 Branches can be (and should be) rebased, rewritten, and squashed where
appropriate (to make history cleaner, but not if the branch is being used by
multiple people).

2 Stable releases can be tagged on the master branch.

Let’s say you’re working on a new desktop application called GutRub that provides
a tutorial for soothing digestion by rubbing your stomach. You want to add a
feature for a counterclockwise rub tutorial, so you create a feature branch named
counterclockwise-rub from the master branch. You then commit your changes to
www.it-ebooks.info

http://www.it-ebooks.info/

214 CHAPTER 14 Recommended team workflows
this branch over the course of a few weeks and push them to the remote repository.
When you’ve tested your changes and think they’re stable enough to be included in
the next version, you merge them into master and delete your branch. When version
2.0 is tagged and released from the master branch, it includes your Counterclockwise
Rub feature. If you need to fix a bug with your tutorial playing backward, you can cre-
ate a feature branch named reverse-counterclockwise-rub and follow the same
process as with the new feature.

 Let’s look at figure 14.3 from top (the oldest commit) to bottom (the newest
commit):

1 The initial commit to a repository is on the master branch and made with git
add and git commit.

2 A new feature is being developed, so it’s branched off the master branch with
git checkout -b.

2 feature
branches

master
branchTime

2

1

5

4

6

7

4

3

Branch Multiple
branches

Commit

Key

Parenting Merging Rebasing
Rewritten
commit

v1.0Figure 14.3 Mike Flow Single
www.it-ebooks.info

http://www.it-ebooks.info/

215Mike Flow
3 Another feature is developed in parallel, so it too is branched off the master
branch with git checkout -b.

4 Commits are made to both feature branches with git commit. They’re pushed
periodically with git push.

5 A feature branch is submitted for review in a pull request, either through the
GitHub web interface or with gh pull-request (introduced in technique 59).
If any changes to files are needed due to comments in the pull request, the
changes are committed. The pull request is automatically updated with all
changes after new commits have been pushed to the remote branch. When the
branch is ready, it’s merged to master with git merge and deleted locally with
git branch --delete and remotely with git push --delete.

6 The remaining feature branch needs to use the changes in master and to
rewrite commits, so it’s rebased and squashed on top of master with git rebase
--interactive. This may be to use work from master in the branch, to resolve
conflicts in the feature branch before they’re merged into master, or to clean
up commits by rewriting them.

7 The remaining feature branch is submitted for review, merged, and deleted.

14.3.2 Mike Flow Multiple

Mike Flow Multiple is essentially Mike Flow Single with release branches:

 Release branches are branched off of master and can be committed to directly,
cherry-picked, or merged to from feature branches.

 Unlike feature branches, release branches are never rewritten.
 Tags are created on feature branches rather than master.

Let’s say you’re working on a new desktop application called CutDub, which provides
the ability to trim dubstep music albums to your chosen length. You want to add a fea-
ture for automatic silence trimming, so you create a feature branch named auto-
silence-trim from the master branch. You then commit your changes to this branch
over the course of a few weeks and push them to the remote repository. When you’ve
tested your changes and think they’re stable enough to be included in the next stable
version, you merge them into master and delete your branch. When the 2.x release
branch is created from the master branch, it includes your automatic silence trim-
ming feature. When 2.0 is tagged and released, it includes the feature. If you need to
fix a bug in the 2.0 release with some trims causing corruption, you can create a fea-
ture branch named fix-trim-corruption and merge it into master and 2.x and pro-
duce a new release after testing.

 Figure 14.4 shows Mike Flow Multiple from top (the oldest commit) to bottom
(the newest commit):

www.it-ebooks.info

http://www.it-ebooks.info/

216 CHAPTER 14 Recommended team workflows
1 The initial commit to a repository is on the master branch and made with git
add and git commit.

2 A new feature is being developed, so it’s branched off the master branch with
git checkout -b.

3 A release branch for the v1.x release series is branched off the master branch
with git checkout -b.

2 release
branches

Branch Multiple
branches

master
branchTime

v1.0

Commit

Key

Parenting Merging Rebasing

v2.1

v2.0

v1.1

Rewritten
commit

1

5

8 8

6

3

11

10

12

13

14

9

2

4

7

4 feature branches

Figure 14.4 Mike Flow Multiple
www.it-ebooks.info

http://www.it-ebooks.info/

217Mike Flow
4 A commit is made to the feature branch with git commit. It’s pushed with git
push.

5 A feature branch is submitted for review in a pull request, either through the
GitHub web interface or with gh pull-request (introduced in technique 59).
If any changes are needed due to comments in the pull request, they’re com-
mitted. The pull request is automatically updated after new commits have been
pushed to the remote branch. When the branch is ready, it’s merged to master
with git merge and deleted locally with git branch --delete and remotely
with git push --delete.

6 Commits are made to the release branches with git commit for changes or fixes
specific to a release but not applicable to other application development. For
example, such a commit may be changing a version number displayed in the
application.

7 Another feature or fix is developed, so a new feature branch is branched off the
master branch with git checkout -b.

8 A feature branch is ready and merged to both master and the release branch
for the v1.x release series with git merge and deleted locally with git branch
--delete and remotely with git push --delete. The new master branch is
tagged v1.1 with git tag and pushed with git push and git push --tags. The
release branch is not deleted but kept around indefinitely in case any more sta-
ble releases are needed from it.

9 Another feature is developed, so a new feature branch is branched off the master
branch with git checkout -b.

10 A new release branch for the v2.x release series is branched off the master
branch with git checkout -b.

11 A fix is needed for the v2.x release series, so a new feature branch is branched
off the v2.x release branch with git checkout -b.

12 The feature branch fix is ready and merged to the v2.x release series branch
with git merge and deleted locally with git branch --delete and remotely with
git push --delete. The new master branch is tagged v2.1 with git tag and
pushed with git push and git push --tags.

13 The remaining feature branch needs to use changes in master and to rewrite
commits, so it’s rebased and squashed on top of master with git rebase
--interactive. This may be to use work from master in the branch, to resolve
conflicts in the feature branch before they’re merged into master, or to clean
up commits by rewriting them.

14 The remaining feature branch is submitted for review, merged, and deleted.

14.3.3 Pros and cons

The pros of the two variants of Mike Flow are as follows:
www.it-ebooks.info

http://www.it-ebooks.info/

218 CHAPTER 14 Recommended team workflows
 Any developers not interacting with a release can behave as if they’re using
GitHub Flow.

 Any developers who are more experienced with Git are empowered by being
able to use more advanced history rewriting on remote branches. This allows
them to keep their work shared and backed up but still make changes before
it’s merged.

 Tags and multiple-release branches are optionally added because they’re neces-
sary with some forms of software development, such as desktop applications
where multiple versions need to be supported.

The cons of the two variants of Mike Flow are as follows:

 It’s not a known workflow outside of this book and people who have worked
with me! That said, I’ve known many other projects that have adopted a similar
process.

 Its flexibility in history rewriting and branching may lead to more mistakes.

Obviously I’m biased, but I think Mike Flow provides the best of both Git Flow and
GitHub Flow: a stable release and review structure but without the complexity of a
strictly mandated process.

14.4 Which workflow is for you?
It’s worth reading about and trying to understand all the workflows in this chapter
and in sections 13.1 and 13.2 before deciding on a workflow for your own team. Here
are some questions to ask yourself when picking the best workflow:

 Is your team experienced with Git or new to it? If new to it, you probably want
to pick as simple a workflow as possible (not Git Flow).

 Does your team respond better to a rigid, documented process with strict rules
or a more relaxed approach? If they like a rigid process, then Git Flow may be a
good solution.

 Do you want to do multiple reviews before releasing code to customers? If so,
Git Flow may be a good fit.

 Do you need to release new versions for multiple release series? For example,
after releasing v2.0 will you later release v1.5? If so, Mike Flow Multiple or Git
Flow will be a good bet. GitHub Flow doesn’t handle this situation at all, so be
extremely wary if you’re considering using it in this case.

 If you want to use workflows that are well-known outside this book, it’s best to
stick to GitHub Flow or Git Flow.

 If you want to deploy code to production as quickly as possible, it’s perhaps
worth sticking with GitHub Flow or Mike Flow Single, because Git Flow and
Mike Flow Multiple add intermediate steps.
www.it-ebooks.info

http://www.it-ebooks.info/

219Summary
 If you’re working alone but still want to use a structured branching workflow,
GitHub Flow and Mike Flow Single and Multiple are sufficient, and Git Flow is
overkill.

Ultimately, any of the workflows discussed in this book will be better than no work-
flow at all (but do try to be consistent). Remember that Git is a powerful tool, and it
should help you and your team be more productive and write better software. Good
luck with it!

14.5 Summary
In this chapter you learned the following:

 How to use GitHub Flow to use feature branches and master for continuous
deployment

 How to use Git Flow to create a strict release, bug fix, and feature development
process

 How to use Mike Flow to create a simple workflow for non-release operations
with the power of history rewriting
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

 appendix A
Git installation

Let’s see if Git is already installed on your local machine and install it if needed. Git
doesn’t come preinstalled on many operating systems, because it’s a tool typically used
by programmers rather than nontechnical computer users. The method required to
install Git varies depending on your operating system of choice.

WHY ARE THERE DIFFERENT VERSIONS OF GIT IN THIS APPENDIX? The different
installation methods and operating systems install different versions of Git.
Don’t worry about this; the main differences between newer Git versions and
older ones are the helpfulness of the output messages. Version 2.0.0 was the
released version at the time of writing, but version 1.8 or above should be suf-
ficient for the needs of this book.

A.1 How to install and run Git
on Apple OS X
To verify whether Git is already
installed, open a Terminal (either the
default OS X /Applications/Utilities/
Terminal.app or an alternative such as
iTerm.app) and run git --version. If
Git is already installed, the output
should resemble figure A.1.

A.1.1 Installing Git on Apple OS X Mavericks or newer

If you’re running OS X Mavericks (10.9) or newer and Git wasn’t already installed
when you ran git --version, it will prompt you to download and install Git similarly
to figure A.2.

Figure A.1 git --version in Terminal.app on
OS X Mavericks
221

www.it-ebooks.info

http://www.it-ebooks.info/

222 APPENDIX A Git installation
A.1.2 Installing Git on Apple OS X Mountain Lion or older

If you’re running OS X Mountain Lion (10.8) or older and you have a package man-
ager installed, you can install Git using one of the following options:

 Homebrew/Tigerbrew (recommended)—brew install git
 MacPorts—sudo port install git-core +svn
 Fink—fink install git

If you don’t wish to install or use a package manager, you can install Git using a graph-
ical installer from the official Git site at http://git-scm.com/download/mac.

A.2 How to install and run Git on Linux or Unix
To verify whether Git is already installed, open a Terminal application or console and
run git --version. If Git is already installed, the output should resemble figure A.3.

 On Linux or Unix, you can install Git directly from your package manager. How to
do this varies from system to system, but here are some of the popular options:

 Debian/Ubuntu—apt-get install git
 Fedora—yum install git
 Gentoo—emerge --ask --verbose dev-vcs/git
 Arch Linux—pacman -S git
 FreeBSD—cd /usr/ports/devel/git && make install

 Solaris 11 Express—pkg install developer/versioning/git
 OpenBSD—pkg_add git

Figure A.2 OS X Mavericks
Git installation

Figure A.3 git --version in XFCE
Terminal on Debian 7.2 (Wheezy)
www.it-ebooks.info

http://git-scm.com/download/mac
http://www.it-ebooks.info/

223Verifying that Git has installed correctly
A.3 How to install and run Git on Microsoft Windows
To verify whether Git is already installed, look for Git Bash links in your Start menu or
on your Desktop. Git for Windows can be downloaded from the official Git site at
http://git-scm .com/download/win. Download and click through the installer. When
it has completed, it will provide Start menu links to run Git Bash.

 Because Git is a Unix program, running Git on Windows runs a Unix shell that
allows access to Git commands. This may be slightly scary, but don’t worry; this book
will show you any commands you need to use.

 To run Git commands, open the Git Bash shortcut from the Start menu. This will
open a Unix shell in a Windows Command Prompt.

 With the Git shell open, you can type in Git commands. To see what Git version
you have installed, type git --version. The output should resemble figure A.4.

A.4 Verifying that Git has installed correctly
To run Git commands, you need to open a Terminal application, console, or com-
mand prompt (depending on your platform). To verify that Git has installed correctly,
run git --version, which should output git version 1.8.5.2 (or another version).

Figure A.4 git --version in
Git Bash on Windows 8.1
www.it-ebooks.info

http://git-scm.com/download/win
http://www.it-ebooks.info/

 appendix B
Creating a GitHub account

and repository

GitHub is a website that provides Git repository hosting as well as issue trackers, Git-
backed wikis, and a workflow to request a merge of the commits in a branch (which is
known as a pull request and is discussed in section 10.1). You can create free accounts
for public remote repositories, where everyone can see your code and commits. Typi-
cally these are used by open source projects, but they will also prove useful for your
learning and experimentation.

 As mentioned in chapter 2, there are free and paid alternatives to GitHub. I’ve
picked GitHub to walk through because, at the time of writing, it’s the most popular
hosted version control system for open source projects and is probably the most popu-
lar Git hosting provider. Learning to use GitHub will bring you immediate benefits in
terms of facilitating open source access and contributions. Although the GitHub UI
may differ from the examples here or from other Git repository hosts, the Git com-
mands used will be the same.

224

www.it-ebooks.info

http://www.it-ebooks.info/

225Signing up for a GitHub account
B.1 Signing up for a GitHub account
Let’s sign up for a new GitHub account. Browse to https://github.com/join, where
you should see something like figure B.1.

 This form allows you to create a new GitHub account, which will let you access the
service and create new repositories. The username you pick will determine the URL of
your GitHub account page and be part of the URL for every repository you create, so
choose it carefully. It can be renamed in the future, but this may cause problems when
updating existing local repositories without manually changing the URL.

Figure B.1 Join GitHub form
www.it-ebooks.info

https://github.com/join
http://www.it-ebooks.info/

226 APPENDIX B Creating a GitHub account and repository
 Enter your username, email, and password, and click the Create button to advance
to the next screen (see figure B.2). This form allows you to select your GitHub pay-
ment plan. The only differences between plans are the number of private repositories
you can create. A private repository means none of your commits or files committed to
the repository can be accessed by others without your explicit approval. A public reposi-
tory means all your commits are viewable by anyone but nobody else can commit to
your repository without your explicit approval. In this book, you never have to commit
anything private to a repository, so you don’t need to choose a paid plan. After you’ve
selected a plan, click the Finish button to advance to the next screen.

 You have created a GitHub account, and the next step is to create a new repository.

Figure B.2 Choosing a GitHub plan
www.it-ebooks.info

http://www.it-ebooks.info/

227Creating a new repository on GitHub
B.2 Creating a new repository on GitHub
After signing up for your new GitHub account, you should see your dashboard, which
should resemble figure B.3. On the dashboard are buttons you can click to create a
new GitHub repository. Click to advance to the next screen.

Creating a new repository requires you to pick a name and, optionally, a description,
as shown in figure B.4. This name will be combined with the username you chose ear-
lier to make the URL for your repository, so choose it carefully. It can be renamed in
the future, but this may cause problems when updating existing local repositories
without manually changing the URL. You may also choose for the repository to be pri-
vate, which requires purchasing a paid GitHub plan. After entering the repository
details, click the Create button to advance to the next screen.

Figure B.3 Dashboard buttons to create a new GitHub repository
www.it-ebooks.info

http://www.it-ebooks.info/

228 APPENDIX B Creating a GitHub account and repository

You have created a GitHub repository and should see something similar to figure B.5.

Figure B.4 Creating a new GitHub repository

Figure B.5 A new GitHub repository
www.it-ebooks.info

http://www.it-ebooks.info/

appendix C
Commented Git

configuration

In chapter 7, you learned about configuring Git for maximum productivity. I’ve been
using Git as my main version control system for a pretty long time at this point, so I
have my Git configuration well optimized.

 This appendix includes my Git configuration files at the time of writing. They’re
heavily commented to explain what they’re doing and why. The latest versions
are always available in my dotfiles repository on GitHub: https://github.com/
mikemcquaid/dotfiles

[include]
path = ~/.gitconfig-user

[color]
Colour terminal command output when possible.
ui = auto

[gist]
Open GitHub Gist in browser after submission.
browse = true

[push]
Push to the set upstream branch being tracked by default.
default = simple

[fetch]
Always prune when fetching (and pulling).
prune = 1

[rerere]
Store and re-use manual conflict resolution changes.
enabled = 1

[core]
Exclude everything this file. Used for general exclusions.
excludesfile = ~/.gitignore
Set attributes on files. Used for general diff improvements.
attributesfile = ~/.gitattributes

[help]
Open Git help pages in the browser as HTML.

Listing C.1 ~/.gitconfig
229

www.it-ebooks.info

https://github.com/mikemcquaid/dotfiles
https://github.com/mikemcquaid/dotfiles
http://www.it-ebooks.info/

230 APPENDIX C Commented Git configuration
format = web
autocorrect = 1

[alias]
'New' Commands
Stage the changes in a given file.
stage = !git add -u
Unstage the changes in a given file.
unstage = reset HEAD --
View the current changes in the staging area.
staged = diff --cached
Print the name of the current branch.
current-branch = symbolic-ref --short HEAD
Print the name of the current upstream tracking branch.
upstream = !git config --get branch.$(git current-branch).remote \

|| echo origin
Cherry-pick a commit with your signature.
sign = cherry-pick --signoff
List all current SVN externals for this repository.
svn-externals = !git svn show-externals | grep -x \\"[^#].*\\"
Create a git:// server of the current repository.
WARNING: this gives all users read/write access
without authentication (so only use on trusted networks).
serve = !git daemon --reuseaddr --export-all --base-path=. \

--verbose ./.git
Merge a branch and commit a merge commit (even if one
isn't needed)
noff = merge --no-ff
Merge a branch with a merge commit and resolve any conflicts
always using that branch's version rather than the current branch.
theirs = !git noff -Xtheirs
Fetch all branches and rebase the current branch against
upstream/master.
rebase-against-master = !git fetch --all \

&& git rebase $(git upstream)/master
Push the current branch upstream to origin using the same branch
name for the remote branch.
upstream-current-branch = !git push --set-upstream origin \

$(git current-branch)
Create a pull request on GitHub using the `gh` command.
pull-request = !git upstream-current-branch && gh pull-request
Upstream the current branch to origin and create a pull request
on GitHub.
upstream-and-pull-request = !git upstream-current-branch \

&& git pull-request
Get the current diff but show differences between characters
instead of just the differences between lines.
word-diff = diff --word-diff
Push the current branch and set it as the default upstream branch.
push-and-set-upstream = push --set-upstream
Create a new branch by checking out another branch.
checkout-as-new-branch = checkout -b
Rebase against origin/master and prompt for what operations
should be performed.
interactively-rebase-against-origin-master = \

!git rebase --interactive origin/master
www.it-ebooks.info

http://www.it-ebooks.info/

231APPENDIX C Commented Git configuration
Show the commit log with a prettier, clearer history.
pretty-one-line-log = log --graph --oneline --decorate
Commit any changes to files, squash them into the last commit
and update its date.
fix-up-previous-commit = !git commit --all --amend \

--reuse-message=HEAD --date=\"$(date)\" #"
Checkout the staging branch and update it.
pull-staging = !git checkout staging && git pull
Checkout the master branch and update it.
pull-master = !git checkout master && git pull
Update the staging, master and current branches.
pull-master-staging-and-current-branch = \

!BRANCH=$(git current-branch) && git fetch --all \
&& git pull-staging && git pull-master && \
git checkout $BRANCH && git pull

Commit a work-in-progress commit (to use with
fix-up-previous-commit)
work-in-progress = commit -a -m 'WIP'
Merge a branch with a merge commit and use the more time-consuming
patience diff algorithm
patience = !git noff -Xpatience
Hard reset branch to the upstream version.
hard-reset = !git reset --hard $(git upstream)/$(git current-branch)
Assume the specified file is unchanged to stop changes
being seen by Git
assume = update-index --assume-unchanged
No longer assume a specified file remains unchanged
unassume = update-index --no-assume-unchanged
List all files that are assumed to be unchanged
assumed = !git ls-files -v | grep '^[hsmrck?]' | cut -c 3-

Shortened 'New' Commands
fahr = !git fetch --all && git hard-reset
rem = !git rebase-against-master
wip = !git work-in-progress
pr = !git upstream-and-pull-request
up = !git upstream-current-branch
pm = !git pull-master-staging-and-current-branch
fa = !git fetch --all
w = !git word-diff
u = !git push-and-set-upstream
b = !git checkout-as-new-branch
i = !git interactively-rebase-against-origin-master
`true` needed as the return status is wrong otherwise.
l = !git pretty-one-line-log || true
f = !git fix-up-previous-commit

Shortened Existing Commands
p = pull
s = status --short --branch

[instaweb]
Use the Ruby WEBRick library when creating a `git instaweb`
HTTP server.
httpd = webrick

[diff]
Use the OS X graphical three-way merge tool for graphical diffs.
www.it-ebooks.info

http://www.it-ebooks.info/

232 APPENDIX C Commented Git configuration
tool = opendiff
Use the slower but better patience diff algorithm
algorithm = patience

[diff "xml"]
textconv = xmllint --format --recover

[difftool "opendiff"]
Set the OS X opendiff command name.
path = opendiff

[merge]
Use the OS X graphical three-way merge tool for graphical merges.
tool = opendiff

[mergetool]
Don't prompt before opening the merge tool.
prompt = false
Don't keep backups of the merge tool inputs.
keepBackup = false
Don't keep the merge tool temporary input/output files.
keepTemporaries = false

[mergetool "opendiff"]
Use a script to setup opendiff correctly for Git merges.
path = git-mergetool-opendiff

[apply]
Cleanup whitespace by default when apply patches.
whitespace = fix

[url "git@github.com:"]
Always use GitHub SSH protocol to push.
Allows use of git:// for public repositories with push access
pushInsteadOf = git://github.com/

[url "https://github.com/"]
Use HTTP for GitHub instead of git:// or git@
Enable this in networks where git:// or git@ are blocked.
#insteadOf = git://github.com/
#insteadOf = git@github.com:

[url "git@github.com:"]
Use SSH for GitHub instead of https://
Enable this in networks where https:// has issues.
#insteadOf = https://github.com/

[url "git@gitorious.org:"]
Always use Gitorious SSH protocol to push.
Allows use of git:// for public repositories with push access
(which is often faster).
pushInsteadOf = git://gitorious.org/

[credential]
Use OSX Keychain to store HTTP passwords.
helper = osxkeychain

[filter "media"]
clean = git-media-clean %f
smudge = git-media-smudge %f

[gh]
protocol = https

[user]
Name used in commit messages.

Listing C.2 ~/.gitconfig-user
www.it-ebooks.info

http://www.it-ebooks.info/

233APPENDIX C Commented Git configuration
name = Mike McQuaid
Email used in commit messages.
email = mike@mikemcquaid.com

[shell]
Default SSH username.
username = mike

[sourceforge]
SourceForge username.
username = mikemcquaid

[github]
GitHub username for command-line tools.
user = mikemcquaid

[alias]
Push the current branch upstream to mikemcquaid using the same
branch name for the remote branch.
um = !git push --set-upstream mikemcquaid $(git current-branch)

Ignore files generated by Qt.
moc_*.cpp
qrc_*.cpp
ui_*.h

Ignore compiler output files.
*.o
*.pyc

Ignore text editor local configuration..
*.pro.user
.tm_properties
*.xcodeproj/project.xcworkspace/
*.xcodeproj/xcuserdata/

Ignore temporary generated files.
*.rej
*.swp
*~

Ignore thumbnails metadata generated by OSX.
.DS_Store

Ignore wrapper scripts generated by Bundler.
.bundle/bin/

Ignore files generated by CMake.
CMakeFiles/
CMakeCache.txt
cmake_install.cmake
install_manifest.txt

Ignore build directories.
b/

Diff .t2d files as if they were XML (they are).
*.t2d diff=xml

Listing C.3 ~/.gitignore

Listing C.4 ~/.gitattributes
www.it-ebooks.info

http://www.it-ebooks.info/

appendix D
Why use version control?

You may sometimes find yourself speaking to people who aren’t familiar with version
control concepts or why version control systems are useful for managing changes to
text. This appendix provides a simple but effective argument for convincing others
why version control is useful and important.

D.1 Handling changes
A common problem when dealing with information stored on a computer is handling
changes. For example, after adding, modifying, or deleting text, you may want to undo
that action (and perhaps redo it later). At the simplest level, this might be done by
clicking Undo in a text editor (which reverts a previous action); after new words are
added, it may be necessary to undo these changes by pressing Undo repeatedly until
you return to the desired previous state.

 A naïve method for handling multiple file versions is often to create duplicate files
with different filenames and contents (Important Document V4 FINAL FINAL.doc may
sound sadly familiar). An example of this approach can be seen in figure D.1.

= Git In
Practice
// TODO:
write book Document

is edited.

Document
changes are

saved to
different files.

Changes

Save v2 Save v3 Save v4Save v1

= Git In
Practice
== Chapter 1
Git In
Practice
makes Git In
Perfect!
// TODO: Is
this funny?

Changes

= Git In
Practice
== Chapter 1
Git In
Practice
makes
...
Git In
Perfect!

= Git In
Practice
== Chapter 1
// TODO:
think of
funny first
line that
editor will
approve.

Changes

/Users/mike/
GitInPractice-v1.asciidoc

/Users/mike/
GitInPractice-v2.asciidoc

/Users/mike/
GitInPractice-v3.asciidoc

/Users/mike/
GitInPractice-v4.asciidoc

Multiple files are
used. A different

version is
stored in each

one.

Figure D.1 Versioning with multiple files
234

www.it-ebooks.info

http://www.it-ebooks.info/

235Handling changes
At a more advanced level, you may be sharing a document with other people and,
rather than just undoing and redoing changes, wish to know who made a change, why
they made it, when they made it and what the change was, and perhaps even store
multiple versions of the document in parallel. A version control system (such as Git)
allows all these operations and more.

 In a version control system, instead of just saving a document after your changes
are made, you commit it. This involves a save-like operation commanding the version
control system to store this particular version and specifying a message stating the rea-
son for the change or what it accomplishes. When another commit is made, the previ-
ous version remains in history, where its changes can be examined later. Version
control systems can therefore solve the problem of reviewing and retrieving previous
changes and allow single files to be used rather than duplicated. This workflow is
shown in figure D.2.

 When editing a file in a version control system, you always edit/save/commit the
same file on disk. Its location won’t move, either manually or automatically (unless
you wish to rename it, of course). When you wish to access previous versions of the
file, you can either view them through the version control system or restore the file on
disk to a previous version. This allows you to see exactly what may have changed
between versions. When using multiple files, you’d have to manually compare each of
the files to see differences and keep track of multiple files on your disk.

= Git In
Practice
// TODO:
write book Document

is edited
and saved.

Document
changes are

committed to the
version control

system.

Changes

Commit v2 Commit v3 Commit v4Commit v1

= Git In
Practice
== Chapter 1
Git In
Practice
makes Git In
Perfect!
// TODO: Is
this funny?

Changes

= Git In
Practice
== Chapter 1
Git In
Practice
makes
...
Git In
Perfect!

= Git In
Practice
== Chapter 1
// TODO:
think of
funny first
line that
editor will
approve.

Initial commit
of book.

v1
Mike McQuaid

10:30 29 Sep 13

Joke rejected
by editor!

v4
Mike McQuaid

18:30 11 Oct 13

Add opening
joke. Funny?

v2
Mike McQuaid

11:30 29 Sep 13

Improve joke
comic timing.

v3
Mike McQuaid

17:30 30 Sep 13

Changes

The version control
system stores metadata
about each document
change: for example,
a description of the

change, a version, the
author, and the

time/date.

A single file on disk is used to
store multiple different versions.

/Users/mike/
GitInPractice.asciidoc

Figure D.2 Versioning with a version control system
www.it-ebooks.info

http://www.it-ebooks.info/

236 APPENDIX D Why use version control?
D.2 Version control workflow
Version control systems work by maintaining a list of changes to files over time. Each
time a file is modified and committed, the new version of the file is stored in the repos-
itory: a centralized location where the version control system stores files for a particu-
lar project. Each commit corresponds to a particular version and stores references to
the previously made commit, a commit message describing the changes made in this
commit, the time it was made, who made it, and the contents of the files at this point.
The files’ state from a commit can be compared to a previous version, and the differ-
ence between the versions’ files (known as diffs) can be queried.

 Figure D.3 shows the workflow used with a version control system. After adding
new changes to versioned files, you create new commits containing these changes and
commit the changes to the repository. At a later point, you can check out different ver-
sions of files. This allows you to have confidence that, no matter what you may add,
modify, or delete, all committed versions of your files will remain in the version con-
trol system if you need to check their contents later.

D.3 Version control for programmer collaboration
Programmers spend most of their time editing text. This text is typically source code
that will be interpreted by a computer to perform some task, but it could also be soft-
ware configuration files, documentation, or emails. Because programmers typically
work on independent units of work while in larger teams and can be distributed by
time or geography, it’s important that they communicate explicitly with other pro-

Version control repository

Files in a version controlled directory

Create new commit

The repository stores all versions of all versioned
files for later retrieval or comparison.

Files can be changed, added, and committed to
store new versions in the repository.

Commit file
changes.

Add file
changes.

Check out different
file versions.

Figure D.3 Git add/
commit/checkout workflow
www.it-ebooks.info

http://www.it-ebooks.info/

237Version control for programmer collaboration
grammers about why a particular change was made. Additionally, programmers inevi-
tably write software that contains bugs. When trying to work out why a bug occurred,
it’s useful to see what changes were made, by whom, and for what reason. Often pro-
grammers need to fix bugs in sections of code they didn’t create, so being able to
record and recall the intent of the code’s author at a later point can help understand
what may have caused a bug. These reasons are multiplied by the fact that program-
mers typically work with huge numbers of source files. Given these reasons, it should
be clear why most programming projects use version control systems to manage their
source code.

 When creating computer software, it’s also common to release new versions. New
versions are generally released when bugs are fixed and/or when new features have
been implemented. Sometimes a team may be developing a new feature but need to
provide a new version with a bug fix before the new feature is ready. Two branches can
be used to work on the bug fix independently of the new feature. This allows work on
the bug fix and the new feature to occur in parallel. These branches can later be
merged, which causes all the changes made in one to be included into the other.

 In figure D.4 you can see a simple example of using multiple branches when writ-
ing a book.

Changes, commits, history, a repository, diffs, and branches are all typically provided by ver-
sion control systems (such as Git). These features enable workflows where changes are
logged for future reference, work can be done in parallel, and previous versions of
files are kept. Hopefully this provides you with a basic understanding of why version
control systems are useful.

separate-files
branch

master
branch

Commits separating into two files

Commits adding new content

Split chapters
into files.

Rename Chapter
1 file.

Add first line.Start Chapter 2.
Started first chapter

so fix TODO.

Figure D.4 Committing on multiple branches
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

index of Git methods

gh 166–167
gh clone 165
gh fork 168
gh merge 172
gh pull-request 165, 168
git add 7–9, 91
git add - -patch 188–189, 191
git bisect 78–82
git bisect bad 82–83
git bisect good 82–83
git bisect log 81
git bisect run 82–83
git bisect skip 81
git blame 76–78
git branch 37, 39–40, 49–50, 86, 91
git checkout 40–42, 110
git cherry 102–103
git cherry-pick 98–100
git clean 57–58, 61
git clone 30–32
git clone - -mirror 176–177
git commit 7, 10–12
git commit - -patch 190–191
git config 130–137
git daemon 178–180
git describe 97–98
git diff 18–21, 195
git diff - -check 194–195
git fetch 35–37
git filter-branch 121–125, 159
git help 135

git init 5–6
git init - -bare 175
git instaweb 180–182
git log 13, 15, 17–18, 69–76, 106
git ls-files 65–66
git merge 44–46, 86–87, 90, 93, 170
git mergetool 93
git mv 54–55
git pull 32–34, 36–37, 118
git pull - -rebase 117
git push 28–30, 42–43, 48–49, 96, 133
git push - -force 119
git rebase 110–113
git rebase - -interactive 115–117, 171
git reflog 105–106, 109, 112
git remote 27
git remote add 24–27
git remote prune 134
git rerere 94–95
git reset 56–57, 107–110
git revert 101–102
git rev-parse 23
git rm 55–56
git shortlog 75
git show 70–71, 89, 101, 145
git show master 91–92
git stash 61–62
git stash clear 64
git stash pop 63
git submodule 142
git submodule add 143–146
239

www.it-ebooks.info

http://www.it-ebooks.info/

240 INDEX OF GIT METHODS
git submodule deinit 147
git submodule foreach 149–150
git submodule init 147
git submodule status 146–147
git submodule update 147–149
git subtree 142
git svn 152–155, 158
git svn clone 152, 158
git svn dcommit 157, 159–160

git svn fetch 156–157
git svn rebase 156–157
git svn show-ignore 156
git tag 95–96
git update-index 65, 67
git - -version 221–223
git web- -browse 135
gitk 13, 17
gitx 13, 17
www.it-ebooks.info

http://www.it-ebooks.info/

index

A
add command

adding remote repository 24–27
adding submodules 143–146
committing only parts of files 188–191
overview 8–9

aliasing commands 137–138
apt-get command 222
Arch Linux 222
authoritative versions 27–28
authors

committer vs. 73
Subversion integration 158

autocorrection feature 136

B
bare repository 175
base branch 167
bisect command

automating 82–83
overview 78–81

blame command 76–78
blob objects 12
branches

adding single commit to current 98–101
always creating merge commits 85–87
base 167
branch command 37–40
checking out 40–42
collaboration using 237
creating local 37–40
deleting local after merging 49–50
deleting remote 47–49
displaying current in terminal 139–140

feature 197, 207
head 167
hotfix 210
integration 197
listing branches containing commits 102–103
merge conflicts

avoiding repeated 94–95
overview 46–47
resolving 88–93
using graphical tool 93

merging
overview 44–46
rebasing and 47
strategies 87–88

naming 40
pruning automatically 134
pull requests and 166
pulling and rebasing commits 117–119
purpose of 37
pushing local 42–43
rebasing commits 110–113
rebasing commits interactively 114–117
refs and 22
release 210
resetting to previous commit 107–110
rewriting entire history of 121–125
rewriting history on remote 119–121
Subversion integration 154–155, 160–161
tags and

creating release versions 95–97
generating version number from 97–98

undoing commit 101–102
browser, displaying repository 180–182
bugs, finding commit causing 78–83
241

www.it-ebooks.info

http://www.it-ebooks.info/

242 INDEX
C
caret (^) 77
centralized version control system. See CVS
cgit 182
Chacon, Scott 207
changes

fetching from remote repository 35–37
pulling from remote repository 32
pushing to remote repository 28–30
showing last in files 76–78
stashed

clearing 64
reapplying 63
temporarily stashing 61–63

checking out
checkout command 40–42
cloning vs. 31
Git vs. Subversion 41
reset command vs. 110
with uncommitted changes 42

cherry command 101–103
cherry-pick command 98–101
clean command 57–59
clean history

avoiding whitespace issues 194–195
building commit in Git Gui 193–194
building commit in GitX 191–192
commit messages and 187
committing only parts of files 188–191

clear command 64
cloning repositories

checking out vs. 31
cloning Subversion repositories 152
forking vs. 164
mirroring repository 176–178
overview 30–32

CMake
commands 198–199
pros and cons 202–203
workflow using 196–198

collaboration 236–237
colored output 133
commits

adding single to current branch 98–101
best practices 106–107
building in Git Gui 193–194
building in GitX 191–192
building in staging area 8–9
clean history and 187
commit command 10–12
committer vs. author 73
custom output 74
defined 7–8
displaying single 70–71

email format 71–74
finding commit that caused bug 78–83
graph output 75–76
keeping small 14
listing branches containing 102–103
listing certain 69–70
merge commits 47, 85–87
messages for 14, 187
output files and 60
overview 10–12
parent 13
parts of files 188–191
pulling branch and rebasing 117–119
rebasing interactively 114–117
rebasing on branch 110–113
release logs 75
resetting branch to previous 107–110
resetting files to last 56–57
showing who last changed each line of file

76–78
signing-off 101
squashing 18
Subversion integration 158–160
undoing 101–102
viewing differences between

formats for 21–22
overview 18–20
refs 22–23

viewing history 13–18
configuration

aliasing commands 137–138
arbitrary configuration values 136
autocorrection feature 136
colored output 133
commented example files 229
global 130–131
global ignore file 134–135
help output as HTML 135
pruning branches automatically 134
push defaults 133–134
repository-specific 131–133
sharing between machines 138–139
showing current branch in terminal 139–140
storing passwords in OS X keychain 135–136

conflicts, merge
avoiding repeated 94–95
overview 46–47
resolving 88–93
using graphical tool 93

continuous deployment 209, 213
corruption, disk 107
cut command 66
CVS (centralized version control system) 24
www.it-ebooks.info

http://www.it-ebooks.info/

243INDEX
D
daemon command 178–180
dcommit command 159–160
Debian 222
deleting

ignored files 60–61
local branch after merging 49–50
remote branch 47–49
untracked files 57–59

delta 18
dependencies 142
describe command 97–98
develop branch 210
diff command

avoiding whitespace issues 194–195
formats for 21–22
overview 18–20
refs 22–23

diffstat format 18, 21
disaster recovery

avoiding 106–107
pulling branch and rebasing commits 117–119
rebasing commits interactively 114–117
rebasing commits on another branch 110–113
resetting branch to previous commit 107–110
rewriting entire history of branch 121–125
rewriting history on remote branch 119–121

disk corruption 107
distributed version control system 25
dotfiles repository 138, 229
Driessen, Vincent 209

E
email address for Git 5
email format for commits 71–74
emerge tool 93, 222

F
fast-forward merge 45, 85
feature branches 197, 207, 210
Fedora 222
fetch command 35–37
filesystem

deleting ignored files 60–61
deleting untracked files 57–59
ignoring files 59–60
removing files 55–56
renaming files 54–55
resetting files to last commit 56–57
stashed changes

clearing 64
reapplying 63
temporarily stashing 61–63

unchanged files
assuming files are 64–65

listing 65–66
stop assuming files are 66–67

filter-branch command 121–125
filters, Unix 66
Fink 222
foreach command 149–150
forking repositories

cloning vs. 164
defined 163–165
merging pull requests 172–173
using gh tool 168–169

FreeBSD 222
fsck tool 107

G
gc command 109
Gentoo 222
gh -b 167
gh -h 167
gh tool

fork requests using 168–169
merging pull requests from forked

repository 172–173
overview 165
pull requests using 165–168

Git
advantages of using 3–4
authoritative versions and 27–28
checkout terminology 41
help 6
installing

Linux or Unix 222
Microsoft Windows 223
OS X Mavericks or newer 221
OS X Mountain Lion or older 222
verifying installation 223

object store 12–13
setting up 4–5
Subversion integration

authors and committers 158
branches 154–155, 160–161
commits 159–160
ignore rules 155–156
importing repository 151–154
migrating repository to Git 158–159
pushing to repository 159–160
tags 154–155, 160–161
updating repository 156–158
viewing repository in GitX 158

git add - -force 55
git add - -patch 188–189
Git Bash 223
git blame ^ (caret) 77
git blame - -date 77
www.it-ebooks.info

http://www.it-ebooks.info/

244 INDEX
git blame -e 78
git blame -L 78
git blame -s 78
git blame - -show-email 78
git blame -w 78
git branch - -delete 49
git cherry -v 103
git cherry - -verbose 103
git cherry-pick - -abort 100
git cherry-pick - -continue 100
git cherry-pick - -edit 100
git cherry-pick -s 100
git cherry-pick -x 100
git clean - -dry-run 58
git clean - -force 58
git clean - -force -X 61
git clean -xdf 61
git clone - -bare 32, 177
git clone - -depth 32
git clone - -mirror 32, 177–178
git clone - -recurse-submodules 32, 149
git clone - -recursive-submodules 149
git command. See individual commands
git commit - -amend 110, 171
git commit - -author 12
git commit - -date 12
git commit -i 190
git commit - -message 12
git commit - -patch 190–191
git config - -file 131
git config - -global 130–131
git config - -local 131
git config - -system 131
git daemon - -base-path 179
git daemon - -enable 180
git daemon - -verbose 179
git describe - -tags 98
git diff - -check 194–195
git diff - -stat 21
git diff - -word-diff 21
git filter branch - -all 124
git filter-branch- -commit-filter 125
git filter-branch - -env-filter 124
git filter-branch - -force 124
git filter-branch - -index-filter 123
git filter-branch - -msg-filter 125
git filter-branch - -parent-filter 125
git filter-branch - -prune-empty 123
git filter-branch - -subdirectory-filter 125
git filter-branch - -tag-name-filter 125
git filter-branch - -tree-filter 124
Git Flow

extensions for 212
overview 209–212
pros and cons 212–213

git help - -help 135
git init - -bare 175
git init - -help 6
git instaweb - -local 182
git instaweb - -port 182
git log - -abbrev-commit 106
git log - -after 70
git log %an 74
git log %ar 74
git log - -author 69
git log - -before 70
git log - -date 73
git log - -format 72–73
git log - -graph 75–76
git log - -grep 70
git log - -max-count 70
git log - -merges 70
git log - -min-parents 70
git log -n 70
git log - -patch 18, 73
git log - -pretty 73, 106
git log - -reverse 70
git log %s 74
git log - -stat 18
git log - -until 70
git log - -walk-reflogs 106
git log - -word-diff 18
git ls-files - -others 58
git ls-files -v 66
git merge - -ff-only 87
git merge - -no-ff 87
git merge -s 87
git merge - -strategy 87
git mv -f 55
git pull - -rebase 34, 117–119
git push - -all 30
git push - -delete 48
git push - -force 30, 121
git push - -set-upstream 28–29
git push - -tags 97
git push -u 29
git rebase - -abort 113
git rebase - -continue 113
-git rebase -interactive 114–117, 171
git rebase - -skip 113
git reset - -hard 57, 107, 110
git reset - -mixed 107
git reset - -mixed 57, 107, 110
git reset - -soft 110
git rm - -cached 123
git rm - -dry-run 56, 58
git rm - -ignore-unmatch 123
git rm -n 56
git rm -r 56
.git subdirectory 6–7
www.it-ebooks.info

http://www.it-ebooks.info/

245INDEX
git submodule add - -force 146
git submodule add - -quiet 146
git submodule - -depth 146
git submodule foreach - -quiet 150
git submodule foreach - -recursive 150
git submodule status - -recursive 147
git submodule update - -depth 149
git submodule update - -force 149
git submodule update - -init 147–149
git submodule update - -no-fetch 149
git submodule update - -recursive 149
git svn clone - -author-file 158
git svn - -mergeinfo 160
git tag -d 96
git tag - -delete 96
git tag -f 96
git tag - -force 96
git tag -l 96
git tag - -list 96
git update-index - -no-assume-unchanged 67
git update-index - -assume-unchanged 65
git - -version 133, 221
git://protocol 28, 178
.gitattributes file 229
.gitconfig file 131, 138, 229
.gitconfig-user file 229
git-credential-winstore tool 136
GitHub

creating repository 227–228
gh tool

fork requests using 168–169
merging pull requests from forked

repository 172–173
overview 165
pull requests using 165–168

Git and 4
help pages on pull requests and forks 164
hosting using 182
setting up account 225–226

GitHub Flow
overview 207–208
pros and cons 209

.gitignore file 59–60, 135, 155–156, 229
gitk tool 15, 193
.gitmodules file 145
gitolite 182
git-svn package 152
gitweb 180
GitX tool 15–17, 158, 191–192
global configuration 130–131
global ignore file 134–135
grep command 66
gui command 193–194
gvimdiff tool 93

H
head branch 167
HEAD ref 22
help output as HTML 135
history, commit

custom output 74
email format 71–74
finding commit that caused bug 78–83
graph output 75–76
Homebrew and 203
listing all including rewrites 105–106
listing only certain commits 69–70
maintaining clean

avoiding whitespace issues 194–195
building commit in Git Gui 193–194
building commit in GitX 191–192
commit messages and 187
committing only parts of files 188–191

release logs 75
rewriting

entire history of branch 121–125
pulling branch and rebasing

commits 117–119
rebasing commits interactively 114–117
rebasing commits on another branch

110–113
on remote branch 119–121
resetting branch to previous commit

107–110
showing who last changed each line of file

76–78
single commit 70–71
squashing commits 18
viewing 13–18

$HOME directory 130
Homebrew

commands 201–202
installing Git 222
pros and cons 203–204
readable history 203
workflow using 200

hosting repositories
displaying repository in browser 180–182
initializing in server hosting format 175–176
mirroring repository 176–178
sharing repository with others on network

178–180
tools for 182

hotfix branches 210
HTTP (Hypertext Transfer Protocol) 28

I
ignore property 155
ignore-all-space option 88
www.it-ebooks.info

http://www.it-ebooks.info/

246 INDEX
ignored files
adding 59–60
deleting 60–61
global ignore file 134–135

init command
initializing repository in server hosting

format 175–176
overview 5–6

initial commit 13
installing

on Linux or Unix 222
on Microsoft Windows 223
on OS X Mavericks or newer 221
on OS X Mountain Lion or older 222
verifying installation 223

instaweb command 180–182
integration branches 197
issue trackers 163

K
kdiff3 tool 93
Kitware 196

L
Linux kernel project and Git 3
Linux, installing Git on 222
log command

email format 71–74
listing only certain commits 69–70
overview 13–15

ls-files command 58

M
Mac OS X

installing on Mavericks or newer 221
installing on Mountain Lion or older 222
passwords in keychain 135–136

master branch
in Git Flow 209
merging pull requests and 164

master ref 22
matching push strategy 133
meld tool 93
merge commit

cherry-pick command vs. 100
overview 47

merge conflicts
avoiding repeated 94–95
overview 46–47
resolving 88–93
using graphical tool 93
who should resolve 93

merge strategies 87–88
mergetool command 93
merging branches

deleting local branch afterwards 49–50
merge command 44–47
overview 44–46
rebasing 47

merging pull requests
from forked repository 172–173
from same repository 169–171

merging vs. rebasing
CMake

commands 198–199
pros and cons 202–203
workflow using 196–198

Homebrew
commands 201–202
pros and cons 203–204
workflow using 200

selecting strategy 204–205
messages, commit 14
Microsoft Windows

installing Git 223
instaweb command and 180
storing credentials in 136

Mike Flow
Mike Flow Multiple 215–217
Mike Flow Single 213–215
overview 213
pros and cons 217–218

mirroring repository 176–178
mv command 54–55

N
naming

bare repositories 176
branches 40

next branch 197
nightly branch 197

O
object store 12–13
octopus merge strategy 87
OpenBSD 222
opendiff tool 93
origin ref 27
ours merge strategy 87
ours option 88
output files 60

P
packed-refs file 176, 178
pacman command 222
parent commits 13
passwords 135–136
patience option 88
personalization

aliasing commands 137–138
www.it-ebooks.info

http://www.it-ebooks.info/

247INDEX
personalization (continued)
arbitrary configuration values 136
autocorrection feature 136
colored output 133
global configuration 130–131
global ignore file 134–135
help output as HTML 135
pruning branches automatically 134
push defaults 133–134
repository configuration 131–133
sharing configuration between machines

138–139
showing current branch in terminal 139–140
storing passwords in OS X keychain 135–136

pkg command 222
placeholders for custom output 74
pop command 63
private repositories 226
pruning branches

automating 134
prune command 27

public repositories 226
pull command

fetch command vs. 37
overview 32
rebasing commits 117–119

pull requests
branches and 166
closing without merge 171
defined 163–165
from forked repository 168–169
GitHub and 224
merging from forked repository 172–173
merging from same repository 169–171
using gh tool 165–168
viewing without whitespace changes 168

pushing changes
defaults for 133–134
overview 28–30
pushing local branch 42–43
rewriting history on remote branch 119–121

R
rebasing

on branch 110–113
interactively 114–117
merging vs.

CMake workflow 196–199, 202–203
Homebrew workflow 200–204
selecting strategy 204–205

overview 47
pulling remote branch and 117–119
rebase command 110–113
Subversion integration 156

recursive merge strategy 87
reference log 105
reflog command 105–106
refs

tags and 95
using with diff command 22–23

regressions 78
regular expressions 70
release branches 210
release versions 95–97
remote repositories

adding 24–27
authoritative versions and 27–28
checking out local branch 40–42
cloning 30–32
creating new local branch 37–40
deleting local branch after merging 49–50
deleting remote branch 47–49
fetching changes from 35–37
merging branch

merge conflicts 46–47
overview 44–46
rebasing 47

pulling changes from 32
pushing changes to 28–30
pushing local branch 42–43
updating tags 97

remove command 123
renaming files 54–55
repositories

bare 175
committing changes 7–8, 10–12
configuration for 131–133
creating on GitHub 227–228
defined 5, 236
hosting

displaying repository in browser 180–182
initializing in server hosting format 175–176
mirroring repository 176–178
sharing repository with others on

network 178–180
tools for 182

initializing 5–6
private 226
public 226
remote

adding 24–27
authoritative versions and 27–28
checking out local branch 40–42
cloning 30–32
creating new local branch 37–40
deleting local branch after merging 49–50
deleting remote branch 47–49
fetching changes from 35–37
www.it-ebooks.info

http://www.it-ebooks.info/

248 INDEX
repositories, remote (continued)
merge conflicts 46–47
merging branch 44–46
pulling changes from 32
pushing changes to 28–30
pushing local branch 42–43
rebasing 47
updating tags 97

staging area 8–9
Subversion

importing into Git 151–154
pushing to 159–160
updating 156–158

viewing history 13–18
rerere command 94–95
reset command 56–57, 107–110
revert command 101–102, 202
rev-parse command 23
rewriting history

entire history of branch 121–125
pulling branch and rebasing commits 117–119
rebasing commits interactively 114–117
rebasing commits on another branch 110–113
on remote branch 119–121
resetting branch to previous commit 107–110

rm command 55–56
Ruby 180
run command 82–83

S
save argument 62
Secure Shell. See SSH
SHA-1 hash

cherry-pick command and 99
commit references 10
defined 11

sharing configuration 138–139
shortlog command 75
show command 27, 70–71
signing-off commits 101
simple push strategy 133
SMB protocol 178
Solaris 11 Express 222
squashing commits 18
SSH (Secure Shell) 28, 199
stacks 62
stage command 199
start point 39
stashed changes

clearing 64
overview 61–63
reapplying 63
reflog command and 106
stash command 61–63

status command

committing only parts of files 189
for submodules 146–147

SubGit 162
submodules

adding 143–146
displaying status of 146–147
running commands in 149–150
updating 147–149
when to use 141–142

subtree command 142
subtree merge strategy 87
Subversion (SVN)

accessing GitHub repository with 161–162
authoritative versions and 27–28
branches and 38
centralized version control 5
checkout terminology 41
integration

authors and committers 158
branches 154–155, 160–161
commits 159–160
documentation 162
ignore rules 155–156
importing repository 151–154
migrating repository to Git 158–159
pushing to repository 159–160
tags 154–155, 160–161
updating repository 156–158
viewing repository in GitX 158

speed of 4
symbolic-ref command 139

T
tags

creating release versions 95–97
generating version number from 97–98
Subversion integration 154–155, 160–161
updating remote repository 97

team workflows
Git Flow

overview 209–212
pros and cons 212–213

GitHub Flow
overview 207–208
pros and cons 209

Mike Flow
Mike Flow Multiple 215–217
Mike Flow Single 213–215
overview 213
pros and cons 217–218

selecting strategy 218–219
version control systems advantages 236

theirs option 88
Tigerbrew 222
topic branches 197
www.it-ebooks.info

http://www.it-ebooks.info/

249INDEX
tortoisemerge tool 93
Torvalds, Linus 3
tracking branch 30
tree object 12

U
Ubuntu 222
unchanged files

assuming files are 64–65
listing 65–66
stop assuming files are 66–67

unified format diff 21
Unix 66, 222
untracked files 57–59
update command 147–149
update-index command 65

V
vendoring dependencies 142
version control system 3

collaboration 236–237
handling changes 234–235
workflow using 236

version number 97–98
vimdiff tool 93

W
WEBrick 180
whitespace

avoiding issues with 194–195
viewing pull request without changes to 168

workflows
CMake

commands 198–199
overview 196–198
pros and cons 202–203

Git Flow
overview 209–212
pros and cons 212–213

GitHub Flow
overview 207–208
pros and cons 209

Homebrew
commands 201–202
overview 200
pros and cons 203–204

Mike Flow
Mike Flow Multiple 215–217
Mike Flow Single 213–215
overview 213
pros and cons 217–218

selecting strategy 204–205, 218–219
using Git 7
version control system advantages 236

Y
yum command 222
www.it-ebooks.info

http://www.it-ebooks.info/

G
it is a source control system, but it’s a lot more than just
that. For teams working in today’s agile, continuous deliv-
ery environments, Git is a strategic advantage. Built with

a decentralized structure that’s perfect for a distributed team,
Git manages branching, committing, complex merges, and task
switching with minimal ceremony so you can concentrate on
your code.

Git in Practice is a collection of battle-tested techniques designed
to optimize the way you and your team manage development
projects. Aft er a brief overview of Git’s core features, this practi-
cal guide moves quickly to high-value topics like history visual-
ization, advanced branching and rewriting, optimized confi gu-
ration, team workfl ows, submodules, and how to use GitHub
pull requests. Written in an easy-to-follow Problem/Solution/
Discussion format with numerous diagrams and examples, it
skips the theory and gets right to the nitty-gritty tasks that will
transform the way you work.

What’s Inside
Team interaction strategies and techniques
Replacing bad habits with good practices
Juggling complex confi gurations
Rewriting history and disaster recovery

Written for developers familiar with version control and ready
for the good stuff in Git.

Mike McQuaid is a soft ware engineer at GitHub. He’s contributed
to Qt and the Linux kernel, and he maintains the Git-based
Homebrew project.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/GitinPractice

$39.99 / Can $41.99 [INCLUDING eBOOK]

SOFTWARE DEVELOPMENT

M A N N I N G

“Shows how to make your
team’s workfl ows simpler
 and more eff ective.”From the Foreword by

Scott Chacon, Author of Pro Git

“Th e best companion
for your day-to-day

 journeys with Git.”
—Gregor Zurowski, Sotheby’s

“Ready to take off your
 Git training-wheels?
 Read this book!”

—Patrick Toohey
Mettler-Toledo Hi-Speed

“I learned more about how
Git works in the fi rst fi ve
chapters than I did in fi ve

 years of using Git!”—Alan Lenton, Arithmetica Ltd

Mike McQuaid
Git IN PRACTICE

SEE INSERT

www.it-ebooks.info

http://www.it-ebooks.info/

	Git in Practice
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	About the code
	Author Online
	About the author

	about the cover illustration
	Part 1 Introduction to Git
	1 Local Git
	1.1 Why do programmers use Git?
	1.2 Initial setup
	Technique 1 Creating a repository: git init
	1.3 .git subdirectory
	1.4 Creating a new commit: git add, git commit
	Technique 2 Building a new commit in the index staging area: git add
	Technique 3 Committing changes to files: git commit
	1.4.1 Object store
	1.4.2 Parent commits

	Technique 4 Viewing history: git log, gitk, gitx
	1.5 Rewriting history
	Technique 5 Viewing the differences between commits: git diff
	1.6 Diff formats
	1.7 Refs
	1.8 Summary

	2 Remote Git
	Technique 6 Adding a remote repository: git remote add
	2.1 Authoritative version storage
	Technique 7 Pushing changes to a remote repository: git push
	Technique 8 Cloning a remote/GitHub repository onto your local machine: git clone
	Technique 9 Pulling changes from another repository: git pull
	Technique 10 Fetching changes from a remote without modifying local branches: git fetch
	Technique 11 Creating a new local branch from the current branch: git branch
	Technique 12 Checking out a local branch: git checkout
	Technique 13 Pushing a local branch remotely
	Technique 14 Merging an existing branch into the current branch: git merge
	2.2 Merge conflicts
	2.3 Rebasing
	Technique 15 Deleting a remote branch
	Technique 16 Deleting the current local branch after merging
	2.4 Summary

	Part 2 Git essentials
	3 Filesystem interactions
	Technique 17 Renaming or moving a file: git mv
	Technique 18 Removing a file: git rm
	Technique 19 Resetting files to the last commit: git reset
	Technique 20 Deleting untracked files: git clean
	Technique 21 Ignoring files: .gitignore
	Technique 22 Deleting ignored files
	Technique 23 Temporarily stashing some changes: git stash
	Technique 24 Reapplying stashed changes: git stash pop
	Technique 25 Clearing stashed changes: git stash clear
	Technique 26 Assuming files are unchanged
	Technique 27 Listing assumed-unchanged files
	Technique 28 Stopping assuming files are unchanged
	3.1 Summary

	4 History visualization
	Technique 29 Listing only certain commits
	4.1 git show
	Technique 30 Listing commits with different formatting
	4.2 Custom output format
	4.3 Releasing logs: git shortlog
	4.4 The ultimate log output
	Technique 31 Showing who last changed each line of a file: git blame
	Technique 32 Finding which commit caused a particular bug: git bisect
	4.5 Automating git bisect
	4.6 Summary

	5 Advanced branching
	Technique 33 Merging branches and always creating a merge commit
	5.1 Merge strategies
	Technique 34 Resolving a merge conflict
	5.2 Using a graphical merge tool
	Technique 35 Resolving each merge conflict only once: git rerere
	Technique 36 Creating a tag: git tag
	Technique 37 Generating a version number based on previous tags: git describe
	Technique 38 Adding a single commit to the current branch: git cherry-pick
	Technique 39 Reverting a previous commit: git revert
	Technique 40 Listing what branches contain a commit: git cherry
	5.3 Summary

	6 Rewriting history and disaster recovery
	Technique 41 Listing all changes including history rewrites: git reflog
	6.1 Avoiding and recovering from disasters
	Technique 42 Resetting a branch to a previous commit: git reset
	Technique 43 Rebasing commits on top of another branch: git rebase
	Technique 44 Rebasing commits interactively: git rebase --interactive
	Technique 45 Pulling a branch and rebasing commits: git pull --rebase
	Technique 46 Rewriting history on a remote branch: git push --force
	Technique 47 Rewriting the entire history of a branch: git filter-branch
	6.2 Summary

	Part 3 Advanced Git
	7 Personalizing Git
	Technique 48 Setting the configuration for all repositories
	Technique 49 Setting the configuration for a single repository
	7.1 Useful configuration settings
	7.1.1 Colored output in Git
	7.1.2 Git 2.0’s push defaults
	7.1.3 Pruning branches automatically
	7.1.4 Ignoring files across all repositories: global ignore file
	7.1.5 Displaying help output in your web browser
	7.1.6 Storing passwords in the OS X keychain
	7.1.7 Storing arbitrary text in Git configuration
	7.1.8 Autocorrecting misspelled commands

	Technique 50 Aliasing commands
	7.2 Sharing your Git (or other) configuration between machines
	Technique 51 Showing the current branch in your terminal prompt
	7.3 Summary

	8 Vendoring dependencies as submodules
	8.1 When are submodules useful?
	Technique 52 Adding a git submodule: git submodule add
	Technique 53 Showing the status of submodules: git submodule status
	Technique 54 Updating and initializing all submodules: git submodule update --init
	Technique 55 Running a command in every submodule: git submodule foreach
	8.2 Summary

	9 Working with Subversion
	Technique 56 Importing an SVN repository into a Git repository
	9.1 Subversion branches and tags
	9.2 Subversion ignore rules
	9.3 Updating a Subversion repository
	9.4 Subversion authors and committers
	9.5 Viewing a Subversion repository in GitX
	9.6 Migrating a Subversion repository to Git
	Technique 57 Committing and pushing to an SVN repository from a Git repository
	9.7 Local branching and tagging
	Technique 58 Accessing a GitHub repository with Subversion
	9.8 Summary

	10 GitHub pull requests
	10.1 What are pull requests and forks?
	10.2 Interacting with GitHub from the command-line: gh
	Technique 59 Making a pull request in the same repository: gh pull-request
	Technique 60 Making a pull request from a forked repository: gh fork
	Technique 61 Merging a pull request from the same repository
	Technique 62 Merging a pull request from a forked repository: gh merge
	10.3 Summary

	11 Hosting a repository
	Technique 63 Initializing a local repository in a server hosting format: git init --bare
	Technique 64 Mirroring a repository: git clone --mirror
	Technique 65 Sharing a repository with other users on the same network: git daemon
	Technique 66 Displaying a repository in a browser: git instaweb
	11.1 Advanced Git hosting
	11.2 Summary

	Part 4 Git best practices
	12 Creating a clean history
	12.1 Writing a good commit message
	12.2 Building a commit from parts of files: git add --patch
	12.3 Graphically building a commit from parts of files
	12.3.1 Graphically building a commit in GitX
	12.3.2 Graphically building a commit in Git Gui

	12.4 Avoiding whitespace issues: git diff --check
	12.5 Summary

	13 Merging vs. rebasing
	13.1 CMake’s workflow
	13.1.1 Workflow commands

	13.2 Homebrew’s workflow
	13.2.1 Workflow commands

	13.3 CMake workflow pros and cons
	13.4 Homebrew workflow pros and cons
	13.5 Picking your strategy
	13.6 Summary

	14 Recommended team workflows
	14.1 GitHub Flow
	14.1.1 Pros and cons

	14.2 Git Flow
	14.2.1 Pros and cons

	14.3 Mike Flow
	14.3.1 Mike Flow Single
	14.3.2 Mike Flow Multiple
	14.3.3 Pros and cons

	14.4 Which workflow is for you?
	14.5 Summary

	appendix A Git installation
	A.1 How to install and run Git on Apple OS X
	A.1.1 Installing Git on Apple OS X Mavericks or newer
	A.1.2 Installing Git on Apple OS X Mountain Lion or older

	A.2 How to install and run Git on Linux or Unix
	A.3 How to install and run Git on Microsoft Windows
	A.4 Verifying that Git has installed correctly

	appendix B Creating a GitHub account and repository
	B.1 Signing up for a GitHub account
	B.2 Creating a new repository on GitHub

	appendix C Commented Git configuration
	appendix D Why use version control?
	D.1 Handling changes
	D.2 Version control workflow
	D.3 Version control for programmer collaboration

	index of Git methods
	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

